• Title/Summary/Keyword: lake trophic status

Search Result 13, Processing Time 0.033 seconds

Phytoplankton Community and the Evaluation of Water Quality Status in So-ok Stream, the Inflowing Stream to Daechung Lake (대청호의 유입지천인 소옥천의 식물플랑크톤 군집 분석 및 수질영양단계 평가)

  • Kim, Ok-Jin;Lee, Ok-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.113-128
    • /
    • 2011
  • The study analyzed the physico-chemical quality of water and the resident phytoplankton community, and evaluated the water trophic status in So-ok stream flowing into Daechung lake from October 2007 to July 2008. Algal blooming by cyanophytes and diatoms continued throughout the year, with Microcystis aeruginosa and Aulacoseira granulata being prevalent. Ten taxa that are indicators of polluted water, including Oscillatoria limosa appeared. Results based on (Trophic status index) TSI and (Lake trophic status index) LTSI evaluations of water quality status indicated mesotrophication.

Analysis of Trophic State Variation of Lake Yongdam in Dam Construction (담수 이후 용담호 영양상태 변동 요인 분석)

  • Yu, Soon-Ju;Chae, Min-Hee;Hwang, Jong-Yeon;Lee, Jea-an;Park, Jong-gyum;Choi, Tae-bong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.360-367
    • /
    • 2005
  • We have performed to analyze the trophic state resulting of Lake Yongdam as a result of water quality and nutrient concentration. Lake Yongdam is artifitial multi-purpose Dam resulting from the floods of 2001. The water quality of Lake Yongdam may affect the status of the Geum river basin including the Daecheong reservoir. It is necessary to understand the trophic state to assess water quality until stability after flooding. Water quality was surveyed using depth and hydraulic condition analysis. Further density flow was estimated for stratification and trophic state of Lake Yongdam by chlorophyll ${\alpha}$ concentration (2001~2004). And Environmental factors on chlorophyll ${\alpha}$ concentration were analyzed statistically. Trophic state was evaluated as the oligotrophic state at the main stream of the reservoir and eutrophic state at the upper stream in 2001, but evaluated as eutrophic state in 2002 and 2003 by TSI of Aizaki. From the results of multiple regression analysis using stepwise method, chlorophyll ${\alpha}$ concentration was shown to be very significant when nutrient concentration is high upon initial filling of the Dam. Chlorophyll ${\alpha}$ concentration varied according to sample site, season and year. Concentration were high in the upper stream of Lake Yongdam 4, algae bloom in these watershed were affected by location and high nutrient levels in the summer season which have in turn increased phytoplankton bloom into the reservoir.

Abundance and Structure of Microbial Loop Components (Bacteria and Protists) in Lakes of Different Trophic Status

  • Chrost, Ryszard J.;Tomasz, Adamczewski;Kalinowska, Krystyna;Skowronska, Agnieszka
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.858-868
    • /
    • 2009
  • The abundance, biomass, size distribution, and taxonomic composition of bacterial and protistan (heterotrophic and autotrophic nanoflagellates and ciliates) communities were investigated in six lakes of Masurian Lake District (north-eastern Poland) differing in trophic state. Samples were taken from the trophogenic water layer during summer stratification periods. Image analysis techniques with fluorescent in situ hybridization (FISH) as well as [$^3H$]-methyl-thymidine incorporation methods were applied to analyze differences in the composition and activity of bacterial communities. The greatest differences in trophic parameters were found between the humic lake and remaining non-humic ones. The same bacterial and heterotrophic nanoflagellate (HNF) cell size classes dominated in all the studied lakes. However, distinct increases in the contributions of large bacterial (>$1.0{\mu}m$) and HNF (>$10{\mu}m$) cells were observed in eutrophic lakes. The bacterial community was dominated by the ${\beta}$-Proteohacteria group, which accounted for 27% of total DAPI counts. Ciliate communities were largely composed of Oligotrichida. Positive correlations between bacteria and protists, as well as between nanoflagellates (both heterotrophic and autotrophic) and ciliates, suggest that concentrations of food sources may be important in determining the abundance of protists in the studied lakes.

Dynamics of Phytoplankton Community and the Physico-chemical Environmental Factors in Youngchun Dam (영천댐의 식물플랑크톤 군집과 환경요인의 동태)

  • Kim, Sook-Chan;Kim, Han-Soon
    • ALGAE
    • /
    • v.19 no.3
    • /
    • pp.227-234
    • /
    • 2004
  • A study on the dynamics of phytoplankton community and the physico-chemical environmental factors was performed biweekly from April 1998 to March 1999 in Youngchun Dam. A total 72 phytoplankton taxa was identified and dominant taxa were blue-green algae and diatoms. The highest value of phytoplankton standing crop (24,826cells·ml$^{-1}$) was observed in September 7, 1998, the blooming period of blue-green algae Phormidium sp., while the lowest (318cells·ml$^{-1}$) was measured in June 18, 1999. The phytoplankton communities were dominated by blue-green algae of Anabaena planktonica, Microcystis aeruginosa and Phormidium sp. during the summer and autumn periods and were dominated by diatoms of Synedra acus and Aulacoseira spp. during the spring and winter periods. Secchi disc transparency, chlorophyll-a, total nitrogen, total phosphorus and silicate concentration were varied in the ranges of 0.4-2.5 m, 2.4-32.2mg·m$^{-1}$, 0.845-2.352mg·l$^{-1}$, 0.005-0.093mg·l$^{-1}$, 0.2-15.7mg·l$^{-1}$, respectively. The trophic status of Youngchun Dam were estimated eutrophic according to Lake Trophic States Index (LTSI).

Water Quality Assessment using Trophic Status Index and Attached Diatom Index in 10 Reservoirs including Ye-dang Reservoir of Chungcheongnam-do (충남 예당저수지를 포함한 10개 저수지의 영양단계 및 부착규조지수를 이용한 수질평가)

  • Song, Mi-Ae;Kim, Ji-Won;Kim, Hun-Nyun;Kong, Dong-Soo;Lee, Ok-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.155-171
    • /
    • 2011
  • The research assessed water quality using physico-chemical factors, trophic status index and attached diatom index in 10 reservoirs located in Chungcheongnam-do from October 2007 to June 2008. The physico-chemical water quality assessments revealed that Dangjin-gun (St. 1~5), which displayed a high chemical oxygen demand (V and VI) and chlorophyll-${\alpha}$ (Eutrophic-Hypereutrophic), was more polluted than Yesan and Cheongyang-gun. The sample were also hypereutrophic [trophic status index (TSI) 74.6] and ${\beta}$-mesosaprobic [diatom assemblage index to the organic water pollution (DAIpo) 44.47]. Yesan and Cheongyang-gun. Which were mid-level in their pollution status, were eutrophic (TSI 56.9) and ${\alpha}$-oligosaprobic (DAIpo 60.11). TSI correlated strongly with the attached diatom index (of DAIpo 0.60~0.62, and trophic diatom index of 0.72~0.74). Hence, the attached diatom index can be used with the trophic status assessment of lakes using TSI, and lake trophic status index (LTSI).

The Different Isotopic Signatures of Co-existing Zooplankton Species in Two Alpine Lakes (두 삼림호수에 공존하는 동물플랑크톤종의 다른 안정동위원소비)

  • Lee, Jae-Yong;Kim, Bom-Chul;Yoshioka, Takahito;Hino, Shuji
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.294-300
    • /
    • 2008
  • The stable isotopes ratios ($\delta^{13}C\;and\;\delta^{15}N$) of two coexisting species of zooplankton (Daphnia longispina and Acanthodiaptomus pacificus) and POM were determined in two alpine lakes in Japan. The difference of $\delta^{13}C$ between A. pacificus and D. longispina was 4.1$\pm$0.9‰ in Lake Shirakoma, which was larger than in Lake Panke. Whereas the difference of $\delta^{15}N$ between A. pacificus and D. longispina (2.6$\pm$0.8‰) was larger in Lake Panke than in Lake Shirakoma. $\delta^{13}C$ of POM (-26.6$\pm$1.2‰) in Lake Shirakoma was different from those of zooplankton; it was heavier than those of D. longispina and A. pacificus by 3.7$\pm$1.6‰ and 7.8$\pm$1.0‰, respectively. Whereas $\delta^{15}N$ of POM (2.0$\pm$0.8‰) was similar with those of both A. pacificus and D. longispina. This implies that the two lakes may have different trophic structure and food sources for zooplankton, and each species are grazing on selectively different components of POM. The temporal variation of $\delta^{13}C$ for each zooplankton species was associated with lipid contents of zooplankton in both lakes. The results showed that stable isotope composition of zooplankton can be an useful information for understanding energy pathways and trophic structures in lakes.

Analysis of a Spatial Distribution and Nutritional Status of Chlorophyll-a Concentration in the Jinyang Lake Using Landsat 8 Satellite Image (Landsat 8호 영상을 이용한 진양호의 클로로필 a 농도의 공간분포와 영양상태 분석)

  • Jang, Min Won;Cho, Hyun Kyung;Kim, Sang Min
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • The purpose of this study is to evaluate the nutritional status of Lake Jinyang using Landsat 8 satellite image band correlated with chlorophyll-a, which is also related to algae proliferation. We selected 20 Landsat 8 images dating from 2013 to 2017, taken close to water quality measurement date when the cloud cover was less than 20 %. Based on the results of the previous studies, analyzing the correlation between chlorophyll-a, and Landsat 8 satellite image band, we selected near infrared wavelength, band 5 which is closely related to the population of algae. The nutritional status was classified using the Aizaki trophic state index (TSIm). The results of the regression equation between band 5 and the observed chlorophyll-a data was used to calculate chlorophyll-a for the image data from 2013 to 2017. The concentration of chlorophyll-a ranged from 3 to $16.1mg/m^3$. To illustrate the spatial distribution of chlorophyll-a within the lake, the chlorophyll-a concentration was divided into five grades. The images on October 14, 2014 and April 10, 2016 showed relatively high value of chlorophyll-a, while January 18, 2015 and December 6, 2016 chlorophyll-a value were below 5. The images on October 14, 2014 and April 10, 2016 were rated as eutrophic status in most areas. The results of simulating water quality for the day when the water quality was not measured resulted to an approximate value for the Panmun station while the Naedong station needed some corrections.

Seasonal and Spatial Diversity of Picocyanobacteria Community in the Great Mazurian Lakes Derived from DGGE Analyses of 16S rDNA and cpcBA-IGS Markers

  • Jasser, Iwona;Krolicka, Adriana;Jakubiec, Katarzyna;Chrost, Ryszard J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.739-749
    • /
    • 2013
  • The seasonal and spatial diversity of picocyanobacteria (Pcy) in lakes of the Great Mazurian Lakes (GLM) system was examined by DGGE analysis of molecular markers derived from the 16S-23S internal transcribed spacer (ITS) of the ribosomal operon and the phycocyanin operon (cpcBA-IGS). The study of nine lakes, ranging from mesotrophy to hypereutrophy, demonstrated seasonal variance of Pcy. The richness and Shannon diversity index calculated on the basis of both markers were higher in spring and lower in early and late summer. No statistically significant relationships were found between the markers and trophic status of the studied lakes or Pcy abundance. There were, however, statistically significant relationships between the diversity indices and sampling time. The analysis pointed to a different distribution of the two markers. The ITS marker exhibited more unique sequences in time and space, whereas a greater role for common and ubiquitous sequences was indicated by the cpcBA-IGS data. Examination of the Pcy community structure demonstrated that communities were grouped in highly similar clusters according to sampling season/time rather than to the trophic status of the lake. Our results suggest that time is more important than trophic status in shaping the diversity and structure of Pcy communities. The seasonal changes in picocyanobacteria and differences in diversity and community structures are discussed in the context of well-established ecological hypotheses: the PEG model, intermediate disturbance hypothesis (IDH), and horizontal gene transfer (HGT).

The Dynamics of Protein Decomposition in Lakes of Different Trophic Status - Reflections on the Assessment of the Real Proteolytic Activity In Situ

  • Siuda, Waldemar;Kiersztyn, Bartosz;Chrost, Ryszard J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.897-904
    • /
    • 2007
  • The aim of this paper is to discuss the methodology of our investigation of the dynamics of protein degradation and the total in situ protealytic activity in meso/eutrophic, eutrophic, and hypereutrophic freshwater environments. Analysis of the kinetics and rates of enzymatic release of amino acids in water samples preserved with sodium azide allows determination of the concentrations of labile proteins $(C_{LAB})$, and their half-life time $(T_{1/2})$. Moreover, it gives more realistic information on resultant activity in situ $(V_{T1/2})$ of ecto- and extracellular proteases that are responsible for the biological degradation of these compounds. Although the results provided by the proposed method are general y well correlated with those obtained by classical procedures, they better characterize the dynamics of protein degradation processes, especially in eutrophic or hypereutrophic lakes. In these environments, processes of protein decomposition occur mainly on the particles and depend primarily on a metabolic activity of seston-attached bacteria. The method was tested in three lakes. The different degree of eutrophication of these lakes was clearly demonstrated by the measured real proteolytic pattern and confirmed by conventional trophic state determinants.

Spring Bloom of Skeletonema costatum and Lake Trophic Status in the Hwajinpo Lagoon, South Korea (화진포호의 돌말 Skeletonema costatum 대발생과 영양상태)

  • Kim, Baik-Ho;Won, Doo-Hee;Kim, Yong-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.329-339
    • /
    • 2012
  • In the spring (March to June) in 2010, one diatom Skeletonema costatum occurred outbreaks in Lake Hwajinpo, one of the typical lagoons on the east coast of South Korea. We compared the characteristics of the phytoplankton community during the bloom and extinction period of S. costatum, and evaluated the water quality based on nutritional indices. Results indicate that 1) this bloom showed the highest cell density ($>10^5$ cells $mL^{-1}$) among outbreaks of S. costatum occurred Korea, 2) occurred in below or over $20^{\circ}C$ water temperature, and 3) was destroyed in the early summer with higher temperature than the bloom period. Water quality or trophic status of the lake was eutrophic to hypertrophic with high salinity, BOD, COD and phosphate, and low N/P ratios and transparency. Phytoplankton community in the spring bloom had a high dominance and low diversity, but rightly recovered to low dominance and high diversity in the summer season. Therefore, we temporarily conclude that the bloom of S. costatum in Hwajinpo was triggered by the extended spring drought and the reduced influx of river water, and appeal that the bloom can happen repeatedly every year.