Browse > Article

Abundance and Structure of Microbial Loop Components (Bacteria and Protists) in Lakes of Different Trophic Status  

Chrost, Ryszard J. (Department of Microbial Ecology, Faculty of Biology, University of Warsaw)
Tomasz, Adamczewski (Department of Microbial Ecology, Faculty of Biology, University of Warsaw)
Kalinowska, Krystyna (Hydrobiological Station, Centre for Ecological Research, Polish Academy of Sciences)
Skowronska, Agnieszka (Department of Environmental Microbiology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.9, 2009 , pp. 858-868 More about this Journal
Abstract
The abundance, biomass, size distribution, and taxonomic composition of bacterial and protistan (heterotrophic and autotrophic nanoflagellates and ciliates) communities were investigated in six lakes of Masurian Lake District (north-eastern Poland) differing in trophic state. Samples were taken from the trophogenic water layer during summer stratification periods. Image analysis techniques with fluorescent in situ hybridization (FISH) as well as [$^3H$]-methyl-thymidine incorporation methods were applied to analyze differences in the composition and activity of bacterial communities. The greatest differences in trophic parameters were found between the humic lake and remaining non-humic ones. The same bacterial and heterotrophic nanoflagellate (HNF) cell size classes dominated in all the studied lakes. However, distinct increases in the contributions of large bacterial (>$1.0{\mu}m$) and HNF (>$10{\mu}m$) cells were observed in eutrophic lakes. The bacterial community was dominated by the ${\beta}$-Proteohacteria group, which accounted for 27% of total DAPI counts. Ciliate communities were largely composed of Oligotrichida. Positive correlations between bacteria and protists, as well as between nanoflagellates (both heterotrophic and autotrophic) and ciliates, suggest that concentrations of food sources may be important in determining the abundance of protists in the studied lakes.
Keywords
Microbial loop components; size distribution; lake trophic status;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Amann, R. I., B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl. 1990. Combination of 16S-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56: 1919- 1925   PUBMED   ScienceOn
2 Beaver, J. R. and T. L. Crisman. 1989. Analysis of the community structure of ciliated protozoa relative to trophic state in Florida lakes. Hydrobiologia 174: 177-184   DOI
3 Carlson, R. E. 1977. A trophic state index for lakes. Limnol. Oceanogr. 22: 361-369   DOI   ScienceOn
4 Chrost, R. J., M. Koton, and W. Siuda. 2000. Bacterial secondary production and bacterial biomass in four Mazurian Lakes of differing trophic status. Pol. J. Environ. Stud. 9: 255-266
5 Fenchel, T. 1980. Relation between particle size selection and clearance in suspension feeding ciliates. Limnol. Oceanogr. 25: 733-738   DOI   ScienceOn
6 Kivi, K. and O. Setälä. 1995. Simultaneous measurement of food particle selection and clearance rates of planktonic oligotrich ciliates (Ciliophora: Oligotrichina). Mar. Ecol. Prog. Ser. 119: 125-137   DOI
7 Kufel, L. 2001. Uncoupling of chlorophyll and nutrients in lakes - possible reasons, expected consequences. Hydrobiologia 443: 59-67   DOI   ScienceOn
8 Manz, W., R. Amann, W. Ludwig, M. Wagner, and K.-H. Schleifer. 1992. Phylogenetic oligonucleotide probes for the major subclasses of Proteobacteria: Problems and solutions. Syst. Appl. Microbiol. 15: 593-600   DOI
9 Manz, W., R. Amann, M. Vancanneyt, and K.-H. Schleifer. 1996. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga- Flavobacter-Bacteroides in the natural environment. Microbiology 140: 2849-2858   DOI   ScienceOn
10 Munster, U. and R. J. Chrost. 1990. Origin, composition, and microbial utilization of dissolved organic matter, pp. 8-46. In J. Overbeck and R. J. Chrost (eds.). Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer Verlag, New York
11 Neef, A. 1997. PhD Thesis. Anwendynng der in situ; Einzelzellidentifizierung von bakterien zur populationsanalyse in komplexen mikrobiellen biozonosen. Technische Universitat M$\"{u}$nchen, Munich, Germany
12 Pace, M. L., G. B. McManus, and S. E. G. Findlay. 1990. Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnol. Oceanogr. 35: 795- 808   DOI   ScienceOn
13 Porter, K. G. and Y. S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943-948   DOI   ScienceOn
14 Schumann, R., U. Schiewer, U. Karoten, and T. Rieling. 2003. Viability of bacteria from different aquatic habitats. II. Cellular fluorescent markers for membrane integrity and metabolic activity. Aquat. Microb. Ecol. 32: 137-150
15 Simek, K., M. Macek, J. Seda, and V. Vyhnalek. 1990. Possible food chain relationships between bacterioplankton, protozoans and cladocerans in a reservoir. Int. Revue ges. Hydrobiol. 75: 583-596   DOI
16 Muylaert, K., K. Van der Gucht, N. Vloemans, L. De Meester, M. Gillis, and W. Vyverman. 2002. Relationship between bacterial community composition and bottom-up versus topdown variables in four eutrophic shallow lakes. Appl. Environ. Microbiol. 68: 4740-4750   DOI   ScienceOn
17 Simek, K., J. Armengol, M. Comerma, J.-C. Garcia, T. H. Chrzanowski, M. Macek, J. Nedoma, and V. Straskrabova. 1998. Characteristics of protistan control of bacterial production in three reservoirs of different trophy. Int. Rev. Hydrobiol. 83: 485-494
18 Hitchman, R. B. and H. L. J. Jones. 2000. The role of mixotrophic protists in the population dynamics of the microbial food web in a small artificial pond. Freshwater Biol. 43: 231- 241   DOI   ScienceOn
19 del Giorgio, P. A. and G. Scarborough. 1995. Increase in the proportion of metabolically active bacteria along gradients of enrichment in freshwater and marine plankton: Implications on estimates of bacterial growth and production rates. J. Plankton Res. 17: 1905-1924   DOI   ScienceOn
20 Koroleff, F. 1983. Determination of phosphorus. Chemistry of the element in seawater, pp. 125-139. In K. Grasshoff, M. Erhardt, and K. Kremling (eds.), Methods of Seawater Analysis. Verlag Chemie, Weinheim
21 Putt, M. and D. K. Stoecker. 1989. An experimentally determined carbon: Volume ratio for marine 'oligotrichous' ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 1097-1103   DOI   ScienceOn
22 Schafer, H., L. Bernard, C. Courties, P. Lebaron, P. Servais, R. Pukall, et al. 2001. Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: Changes in the genetic diversity of bacterial populations. FEMS Microbiol. Ecol. 34: 243-253   PUBMED   ScienceOn
23 Kalinowska, K. 2004. Bacteria, nanoflagellates and ciliates as components of the microbial loop in three lakes of different trophic status. Pol. J. Ecol. 52: 19-34
24 Pearce, D. A., C. J. Van der Gast, K. Woodward, and K. K. Newsham. 2005. Significant changes in the bacterioplankton community structure of a maritime Antarctic freshwater lake following nutrient enrichment. Microbiology 151: 3237-3248   DOI   ScienceOn
25 Pernthaler, J., B. Sattler, K. Šimek, A. Schwarzenbacher, and R. Pssener. 1996. Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquat. Microb. Ecol. 10: 255-263   DOI   ScienceOn
26 Beaver, J. R. and T. L. Crisman. 1982. The trophic response of ciliated protozoans in freshwater lakes. Limnol. Oceanogr. 27: 246-253   DOI   ScienceOn
27 Jezbera, J., K. Hor ak, and K. Simek. 2006. Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients. Environ. Microbiol. 8: 1330- 1339   DOI   ScienceOn
28 Pernthaler, J., F.-O. Gl ckner, W. Schonhuber, and R. Amann. 2001. Fluorescence in situ hybridization with rRNA-targeted oligonucleotide probes. Methods Microbiol. 30: 207-226   DOI
29 Chrost, R. J. and H. Rai. 1994. Bacterial secondary production, pp. 92-117. In J. Overbeck and R. J. Chrost (eds.), Microbial Ecology of Lake Plu $\^{a}$see. Springer Verlag
30 Domaizon, I., S. Viboud, and D. Fontvieille. 2003. Taxon-specific and seasonal variations in flagellates grazing on heterotrophic bacteria in the oligotrophic Lake Annecy - importance of mixotrophy. FEMS Microbiol. Ecol. 46: 317-329   DOI   ScienceOn
31 Weisse, T. 1991. The annual cycle of heterotrophic freshwater nanoflagellates: Role of bottom-up versus top-down control. J. Plankton Res. 13: 167-185   DOI
32 B$\phi$rsheim, K. Y. and G. Bratbak. 1987. Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from sea water. Mar. Ecol. Prog. Ser. 36: 171-175   DOI
33 Porter, K. G., E. B. Sherr, B. F. Sherr, M. Pace, and R. W. Sanders. 1985. Protozoa in planktonic food webs. J. Protozool. 32: 409-415
34 Jardillier, L., M. Basset, I. Domaizon, A. Belan, C. Amblard, M. Richardot, and D. Debroas. 2004. Bottom-up and top-down control of bacterial community composition in the euphotic zone of a reservoir. Aquat. Microb. Ecol. 35: 259-273   DOI   ScienceOn
35 Jezbera, J., K. Hor ak, and K. Simek. 2005. Food selection by bacterivorous protists: Insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microbiol. Ecol. 52: 351-363   DOI   ScienceOn
36 Lee, S. and J. A. Fuhrman. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 53: 1298-1303   PUBMED   ScienceOn
37 Pernthaler, J., E. Zollner, F. Warnecke, and K. Jürgens. 2005. Bloom of filamentous bacteria in a mesotrophic lake: Identity and potential controlling mechanism. Appl. Environ. Microbiol. 70: 6272-6281   DOI   ScienceOn
38 Lebaron, P., P. Servais, M. Troussellier, C. Courties, G. Muyzer, L. Bernard, et al. 2001. Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: Changes in abundances, activity and composition. FEMS Microbiol. Ecol. 34: 255-266   DOI   ScienceOn
39 del Giorgio, P. A., J. M. Gasol, D. Vaqu, P. Mura, S. Agusti, and C. M. Duarte. 1996. Bacterioplankton community structure: Protists control net production and the proportion of active bacteria in a coastal marine community. Limnol. Oceanogr. 41: 1169-1179   DOI   ScienceOn
40 Sanders, R. W., D. A. Caron, and U. G. Berninger. 1992. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: An inter-ecosystem comparison. Mar. Ecol. Prog. Ser. 86: 1-14   DOI   ScienceOn
41 Sanders, R. W., K. G. Porter, S. J. Bennett, and A. E. Debiase. 1989. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in freshwater planktonic community. Limnol. Oceanogr. 34: 673-687   DOI   ScienceOn
42 Lindstrom, E. S. 2000. Bacterioplankton community composition in five lakes differing in trophic status and humic content. Microb. Ecol. 40: 104-113   PUBMED   ScienceOn
43 Auer, B. and H. Arndt. 2001. Taxonomic composition and biomass of heterotrophic flagellates in relation to lake trophy and season. Freshwater Biol. 46: 959-972   DOI   ScienceOn
44 Chr$\acute{o}$st, R. J. and M. A. Faust. 1999. Consequences of solar radiation on bacterial secondary production and growth rates in subtropical coastal water (Atlantic Coral Reef off Belize, Central America). Aquat. Microb. Ecol. 20: 39-48   DOI   ScienceOn
45 Goldman, J. C., D. A. Caron, O. K. Andersen, and M. R. Dennet. 1985. Nutrient cycling in a microflagellate food chain: I. Nitrogen dynamics. Mar. Ecol. Prog. Ser. 24: 231-242   DOI
46 Arrar, E. J. and G. B. Collins. 1997. Method 445.0. In vitro determination of chlorophyll a and phenophytin a in marine and freshwater algae by fluorescence. National Exposure Research Laboratory. Office of Research and Development. U.S. Environmental Protection Agency
47 Chrost, R. J. and W. Siuda. 2006. Microbial production, utilization, and enzymatic degradation of organic matter in the upper trophogenic layer in the pelagial zone of lakes along a eutrophication gradient. Limnol. Oceanogr. 51: 749-762   DOI   ScienceOn
48 Foissner, W., H. Berger, and J. Schaumburg. 1999. Identification and ecology of limnetic plankton ciliates. Bayerisches. Landesamt f$\"{u}$r Wasserwirtschaft, M$\"{u}$nchen
49 Jurgens, K., J. Pernthaler, S. Schalla, and R. Amann. 1999. Morphological and compositional changes in planktonic bacterial community in response to enhanced protozoan grazing. Appl. Environ. Microbiol. 65: 1241-1250   PUBMED
50 Pace, M. L. 1986. An empiricial analysis of zooplankton community structure across lake trophic gradients. Limnol. Oceanogr. 31: 45-55   DOI   ScienceOn
51 Hahn, M. W., E. R. B. Moore, and M. G. Höfle. 1999. Bacterial filament formation, a defense mechanism against flagellate grazing, is growth rate-controlled in bacteria of different phyla. Appl. Environ. Microbiol. 65: 25-35   PUBMED   ScienceOn
52 Wallner, G., R. Amann, and W. Beisker. 1993. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14: 136-143   DOI   ScienceOn
53 Hahn, M. W. and M. G. Hofle. 2001. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol. Ecol. 35: 113-121   DOI   ScienceOn
54 Jurgens, K. and G. Stolpe. 1995. Seasonal dynamics of crustacean zooplankton, heterotrophic nanoflagellates and bacteria in a shallow, eutrophic lake. Freshwater Biol. 33: 27-38   DOI   ScienceOn
55 Skowro ska, A. 2007. Distribution of microbial-selected populations in Lake North Mamry by fluorescent in situ hybridization. Pol. J. Environ. Stud. 16: 123-128
56 Koton-Czarnecka, M. and R. J. Chrost. 2003. Protozoans prefer large and metabolically active bacteria. Pol. J. Environ. Stud. 12: 325-334
57 Simek, K., J. Bobkova, M. Macek, J. Nedoma, and R. Psenner. 1995. Ciliate grazing on picoplankton in eutrophic reservoir during summer phytoplankton maximum: A study at the species and community level. Limnol. Oceanogr. 40: 1077-1090   DOI   ScienceOn
58 Pernthaler, A., C. M. Prestom, J. Pernthaler, E. F. Delong, and R. Amann. 2002. A comparison of fluorescently labeled oligonucleotide and polynucleotide probes for detection of pelagic marine bacteria and Archaea. Appl. Environ. Microbiol. 68: 661-667   DOI   ScienceOn
59 Psenner, R. 1993. Determination of size and morphology of aquatic bacteria by automated image analysis. pp. 339-345. In P. F. Kemp, B. F. Sherr, E. B. Sherr, and J. J. Cole (eds.), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL
60 Gonzalez, J. M., E. B. Sherr, and B. F. Sherr. 1993. Differential feeding by marine flagellates on growing versus starving and on motile versus nonmotile bacterial prey. Mar. Ecol. Prog. Ser. 102: 257-267   DOI