Browse > Article

The Different Isotopic Signatures of Co-existing Zooplankton Species in Two Alpine Lakes  

Lee, Jae-Yong (Department of Environmental Science, Kangwon National University)
Kim, Bom-Chul (Department of Environmental Science, Kangwon National University)
Yoshioka, Takahito (Field Science Education and Research Center, Kyoto University)
Hino, Shuji (Department of Material and Biological Chemistry, Yamagata University)
Publication Information
Abstract
The stable isotopes ratios ($\delta^{13}C\;and\;\delta^{15}N$) of two coexisting species of zooplankton (Daphnia longispina and Acanthodiaptomus pacificus) and POM were determined in two alpine lakes in Japan. The difference of $\delta^{13}C$ between A. pacificus and D. longispina was 4.1$\pm$0.9‰ in Lake Shirakoma, which was larger than in Lake Panke. Whereas the difference of $\delta^{15}N$ between A. pacificus and D. longispina (2.6$\pm$0.8‰) was larger in Lake Panke than in Lake Shirakoma. $\delta^{13}C$ of POM (-26.6$\pm$1.2‰) in Lake Shirakoma was different from those of zooplankton; it was heavier than those of D. longispina and A. pacificus by 3.7$\pm$1.6‰ and 7.8$\pm$1.0‰, respectively. Whereas $\delta^{15}N$ of POM (2.0$\pm$0.8‰) was similar with those of both A. pacificus and D. longispina. This implies that the two lakes may have different trophic structure and food sources for zooplankton, and each species are grazing on selectively different components of POM. The temporal variation of $\delta^{13}C$ for each zooplankton species was associated with lipid contents of zooplankton in both lakes. The results showed that stable isotope composition of zooplankton can be an useful information for understanding energy pathways and trophic structures in lakes.
Keywords
isotopic signature; lipid; zooplankton species; trophic status;
Citations & Related Records
연도 인용수 순위
  • Reference
1 France, R.L., P.A. Del Giorgio and K.A. Westcott. 1997. Productivity and heterotrophy influences on zooplankton $delta$ 13C in northern temperature lakes. Aquatic Microbiology Ecology 12: 85-93   DOI   ScienceOn
2 Karlsson, J., A. Jonsson, M. Meili and M. Jansson. 2004. $\delta^{15}N$ of zooplankton species in subarctic lakes in northern Sweden: effects of diet and trophic fractionation. Freshwater Biol. 49: 526-534   DOI   ScienceOn
3 Matthews, B. and A. Mazumder. 2005. Temporal vatiation in body composition (C : N) helps explain seasonal patterns of zooplankton $\delta^{13}C$. Freshwater Biol. 50: 502-515   DOI   ScienceOn
4 Pulido-Villena, E., I. Reche and R. Morales-Baquro. 2005. Food web reliance on allochthonous carbon in two high mountain lakes with contrasting catchments: a stable isotope approach. Can. J. Fish. Aquat. Sci. 62: 2640-2648   DOI   ScienceOn
5 Takahashi, K., T. Yoshioka, E. Wada and M. Sakamoto. 1990. Temporal variations in carbon isotope ratio of phytoplankton in a eutrophic lake. J. Plankton Res. 12: 788-808
6 Vander Zanden, M.J. and J.B. Rasmussen. 1999. Primary consumer $\delta^{13}C$ and $^{15}N$ and the trophic position of aquatic consumers. Ecology 80: 1395-1404   DOI   ScienceOn
7 Yoshida, T., T.B. Gurung, M. Kagami and J. Urabe. 2001. Contrasting effects of a cladoceran (Daphnia galeata) and a calanoid copepod (Eodiaptomus japonicus) on algal and microbial plankton in a Japanese lake, Lake Biwa. Oecologia 129: 602-610   DOI
8 Kling, G.W., B. Fry and W.J. O'Brien. 1992. Stable isotopes and planktonic trophic structure in arctic lakes. Ecology 73(2): 561-566   DOI   ScienceOn
9 Zohary, T., J. Erez, M. Gophen, I. Berman-Frank and M. Stiller. 1994. Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret. Limnol. Oceanogr. 39: 1030-1043   DOI   ScienceOn
10 Syvaranta, J., H. Hamalainen and R.I. Jones. 2006. Within-lake variability in carbon and nitrogen stable isotope signatures. Freshwater Biol. 51: 1090-1102   DOI   ScienceOn
11 Gu, B., V. Alexander and D.M. Schell. 1999. Seasonal and interannual variability of plankton carbon isotope ratios in a subarctic lake. Freshwater Biol. 42: 417-426   DOI
12 Peterson, B.J., J.E. Hobbie and J.F. Haney. 1978. Daphnia grazing on natural bacteria. Limnol. Oceanogr. 23(5): 1039-1044   DOI   ScienceOn
13 Adams, T.S. and R.W. Sterner. 2000. The effect of dietary nitrogen content on trophic level $^{15}N$ enrichment. Limnol. Oceanogr. 45: 601-607   DOI   ScienceOn
14 Grey, J., R.I. Jones and D. Sleep. 2001. Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable analysis. Limnol. Oceanogr. 46: 505-513   DOI   ScienceOn
15 Gu, B., D.M. Schell and V. Alexander. 1994. Stable carbon and nitrogen isotope analysis of the plankton food web in a subarctic lake. Can. J. Fish. Aquat. Sci. 51: 1338-1344   DOI   ScienceOn
16 Yoshioka, T., E. Wada and H. Hayashi. 1994. A stable isotope study on seasonal food web dynamics in a eutrophic lake. Ecology 75(3): 835-864   DOI   ScienceOn
17 Yoshioka, T., E. Wada and Y. Saijo. 1988. Isotopic characterization of Lake Kizaki and Lake Suwa. Jpn. J. Limnol. 49(2): 119-128   DOI
18 Minagawa, M. and E. Wada. 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between $\delta^{15}N$ and animal age. Geochim Cosmochim Acta 48: 1135-1140   DOI   ScienceOn
19 Nozu, Y., K. Fukushima and F. Kumon. 2005. Paleoenvironment inferred a sediment core of Lake Shirakoma. Jpn. J. Limnol. 66: 81-92   DOI   ScienceOn
20 DeNiro, M.J. and S. Epstein. 1978. Influnce of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta. 42: 495-506   DOI   ScienceOn
21 Jansson, M., A.K. Bergstrom, P. Blomqvist and S. Drakare. 2000. Allochthonous organic carbon and phytoplankton/bacterioplankton production relationship in lakes. Ecology 81: 3250-3255   DOI   ScienceOn
22 Karlsson, J., D. lymer, K. Vrede and M. Jansson. 2007. Differences in efficiency of carbon transfer from dissolved organic carbon to two zooplankton groups: an enclosure experiment in an oligotrophic lake. Aquat. Sci. 69: 108-114   DOI
23 Rounick, J.S. and M.J. Winterbourn. 1986. Stable carbon isotopes and carbon flow in ecosystems-measuring $^{13}C$ to $^{12}C$ ratios can help trace carbon pathways. BioScience 36(3): 171-177   DOI   ScienceOn
24 Vanderklift, M.A. and S. Ponsard. 2003. Sources of variation in consumer-diet $\delta^{15}N$ enrichment: a meta-analysis. Oecologia 136: 169-182   DOI
25 Yoshioka, T., H. Hayashi and E. Wada. 1989. Seasonal variations of carbon and nitrogen isotope ratios of plankton and sinking particles in Lake Kizaki. Jpn. J. Limnol. 50(4): 313-320   DOI
26 Hamilton, S.K. and W.M. Lewis. 1992. Stable carbon and nitrogen isotopes in algae and detritus from the Orinoco River floodplain, Venezula. Geochim. Cosmochim. Acta. 56: 4237-4246   DOI   ScienceOn
27 Jones, R.I., J. Grey, D. Sleep and L. Arvola. 1999. Stable isotope analysis of zooplankton carbon nutrition in humic lakes. Oikos 86: 97-104   DOI
28 Jones, R.I., J. Grey, D. Sleep and C. Quarmby. 1998. An assessment, using stable isotopes, of the importance of allochthonous organic carbon sources to the pelagic food in Loch Ness. Proceedings of the Royal Society B: Biological Sciences 265: 105-111
29 Gutseit, K., O. Berglund and W. Graneli. 2001. Food quality for Daphnia in humic and clear water lakes. Freshwater Biol. 52: 344-356   DOI   ScienceOn
30 Coffin, B.R., B. Fry and R.T. Wright. 1989. Carbon isotopic compositions of estuarine bacteria. Limnol. Oceanogr. 34(7): 1305-1310   DOI   ScienceOn
31 Rau, G.H. 1978. Carbon-13 depletion in a subalpine lake: carbon flow implications. Science 20: 901-902
32 Hessen, D.O., T. Andersen and A. Lyche. 1990. Carbon metabolism in a humic lake: Pool sizes and cycling though zooplankton. Limnol. Oceanogr. 35: 84-99   DOI   ScienceOn
33 Fry, B. and E.B. Sherr. 1984. $\delta^{13}C$ Measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions of Marine Science 27: 13-47