• Title/Summary/Keyword: lactic-fermentation

Search Result 1,680, Processing Time 0.034 seconds

오미자(Schizandra chinensis)추출물이 김치 숙성에 미치는 영향

  • 이신호;최우정;임용숙
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.229-234
    • /
    • 1997
  • Shizandra chinensis(SC) and Pinus regida(PR) showed antimicrobial activity against 3 strains(B-5, D-1, A-1) of lactic acid bacteria(LAB) isolated from kimchi among eight kinds of plant extracts such as Shizandra chinensis, Phellodendron amurense, ornus officinalis, Pinus regida, Allium tuberosum, Machilus thunbergii, Cyperus rotundus and Schizonepeta tenuifloia. The growth of LAB was inhibited apparently in modified MRS broth containing 1% Schizandra chinensis at $35^{\circ}C$. Pinus regida showed weaker inhibitory effect on the growth of isolated LAB than Shizandra chinensis. pH of SC added kimchi did not change greatly compare with control during 25 days of fermentation. Degree of titratable acidity change and ratio of reducing sugar utilization in control were more higher than in SC added kimchi during fermentation. Growth of total bacteria and lactic acid bacteria was inhibited about 1 to 2 $log_10$ cycle by addition of SC extracts during kimchi fermentation for 10 days at $10^{\circ}C$. Fermentation of kimchi was delaved about 5 to 7 days by addition of 1 or 2% of SC. extract, but sensory quality (falvor, taste and overall acceptability) of SC added kimchi was lower than that of control (p>0.05).

  • PDF

Fermentation Characteristics of Flour Sourdough using Mixed Lactic Acid Bacteria and Bifidobacterium longum as Starters (유산균과 Bifidobacterium longum을 혼합균으로 사용한 Flour Sourdough의 발효 특성)

  • Chae, Dong-Jin;Lee, Kwang-Suck;Jang, Ki-Hyo
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.5
    • /
    • pp.743-750
    • /
    • 2010
  • The influence of various fermenting conditions using Saccharomyces cerevisiae, alone (Control, Single) and in combination with mixed lactic acid-producing bacteria (Combined 1, Mixed, Combined 2), including Bifidobacterium longum, Enterococcus faecium, and Lactobacillus acidophilus on flour sourdough preparation was examined. For the Combined 2 method, starters were incubated separately for 15 h, combined, and then further incubated for 10 h. Fermentation using Combined 2 improved the growth of mixed lactic acid-producing bacteria, but inhibited that of S. cerevisiae. This was also reflected in the extent of the pH reduction in sourdough produced in the Combined 2 step by these organisms. Among biochemical activities, $CO_2$ production and titratable acidity were increased by Combined 2, although the viable yeast counts were decreased. Aroma compounds in sourdough markedly varied according to fermentation conditions.

Optimizing the fermentation condition of low salted squid jeotgal by lactic acid bacteria with enhanced antioxidant activity

  • Akther, Fahima;Le, Bao;Chung, Gyuhwa;Yang, Seung Hwan
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.4
    • /
    • pp.391-402
    • /
    • 2017
  • Lactic acid bacteria (LAB) are widely used as starter culture in food fermentation due to their harmless entity and health beneficial properties along with the ability to change texture, aroma, flavor and acidity of food products. In this study, five different LAB (FB003, FB058, FB077, FB081, and FB111) isolated from different Korean traditional fermented foods, assigned to Lactobacillus plantarum, Pediococcus pentosaceus, Weissella viridescens, Lactobacillus sakei, and Leuconostoc mesenteroides, respectively, on the basis of their physiological properties and 16S rRNA sequence analysis, to use as fermentation starter and check their ability to fasten the ripening time as well as the overall optimization in the fermentation condition. To check their suitability as starters, their safety, acid and bile tolerance, NaCl and temperature resistance, susceptibility to common antibiotics, and antimicrobial activities were determined. Squid jeotgal samples were prepared by adding $10^8CFU/g$ of each strain in different samples, which were then kept for fermentation at $4^{\circ}C$ and checked for their antioxidant activities at 0, 7, 15, and 21-day intervals. The samples fermented with FB003 and FB077 displayed the highest antioxidant activity. This study revealed two effective starter cultures (FB003, FB077) for squid jeotgal fermentation, which presented increased functionalities. The results of this study will lead to the development of novel industrial-scale production avenues for jeotgal preparation, and offer new insights into the prevention and control of chronic diseases.

Origin of lactic acid bacteria in mulkimchi fermentation

  • Hwang, Chung Eun;Haque, Md. Azizul;Hong, Su Young;Kim, Su Cheol;Cho, Kye Man
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.441-446
    • /
    • 2019
  • The assortment of endophytic lactic acid bacteria (LAB) in kimchi derives from its raw vegetables, which include Chinese cabbage, radish, welsh onion, onion, garlic, red pepper, and ginger. These vegetables were examined during mulkimchi fermentation using gene-specific multiplex polymerase chain reaction and 16S ribosomal RNA sequence analysis. Sixteen species from five LAB genera (Leuconostoc, Lactobacillus, Lactococcus, Pediococcus, and Weissella) appeared in the raw kimchi materials. Interestingly, nine LAB species were identified in mulkimchi on fermentation day 0 as follows: Leuconostoc carnosum, Leuconostoc citreum, Leuconostoc gelidum, Leuconostoc inhae, Leuconostoc mesenteroides, Lactobacillus plantarum, Lactobacillus sakei, Lactococcus lactis, and Weissella confusa. Seven additional LAB species were present in mulkimchi at fermentation day 9 as follows: Leuconostoc gasicomitatum, Leuconostoc kimchii, Lactobacillus brevis, Lactobacillus curvatus, Lactobacillus pentosus, Pediococcus pentosaceus, and Weissella koreensis. These species corresponded completely with the LAB in kimchi vegetables. Wei. confusa was the predominant LAB during early fermentation (pH 6.20 to 4.98 and acidity 0.20 to 0.64%), while Lac. sakei, Lac. plantarum, and Wei. koreensis became dominant later in fermentation (pH 4.98 to 3.88 and acidity 0.64 to 1.26%). These results collectively demonstrate that the LAB involved in mulkimchi fermentation originates from the raw vegetables examined.

Inhibition of Lactic Acid Bacteria in Kimchi Fermentation by Nisin

  • CHOI, MIN HO;YUN HEE PARK
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.547-551
    • /
    • 1998
  • Sixty isolates of lactic acid bacteria found in kimchi, a traditional Korean dish of fermented vegetables, were tested for nisin sensitivity. Of the sixty isolates, all belonging to the genera Leuconostoc, Lactobacillus, and Pediococcus, fifty isolates were sensitive to nisin at a concentration of 100 IU/$m\ell$, and four isolates appeared to be resistant to nisin. This demonstrated that the nisin sensitivity of lactic acid bacteria found in kimchi varied considerably among isolates. In MRS broth containing nisin at concentrations of 100 to 300 IV/$m\ell$, the growth of sensitive isolates of Leuconostoc mesenteroides and Lactobacillus plantarum was inhibited for two to three days at 2$0^{\circ}C$. When nisin was added to kimchi preparations at a concentration of 100 IU/$m\ell$, the growth of lactic acid bacteria was delayed and reached a maximum two days later than that in kimchi without nisin. These results suggest the possible use of nisin in kimchi preparation, at recommended levels, to control the lactic acid fermentation. Scanning electron micrographs of a sensitive isolate L. plantarum revealed the formation of pores on cell surfaces followed by rapid cell wall destruction 1 h after the addition of nisin.

  • PDF

Impact of Lactic Acid and Hydrogen Ion on the Simultaneous Fermentation of Glucose and Xylose by the Carbon Catabolite Derepressed Lactobacillus brevis ATCC 14869

  • Jeong, Kyung Hun;Israr, Beenish;Shoemaker, Sharon P.;Mills, David A.;Kim, Jaehan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1182-1189
    • /
    • 2016
  • Lactobacillus brevis ATCC 14869 exhibited a carbon catabolite derepressed phenotype that has ability to consume fermentable sugars simultaneously with glucose. To evaluate this unusual phenotype under harsh conditions during fermentation, the effects of lactic acid and hydrogen ion concentrations on L. brevis ATCC 14869 were examined. Kinetic equations describing the relationship between specific cell growth rate and lactic acid or hydrogen ion concentration were deduced empirically. The change of substrate utilization and product formation according to lactic acid and hydrogen ion concentration in the media were quantitatively described. Although the simultaneous utilization has been observed regardless of hydrogen ion or lactic acid concentration, the preference of substrates and the formation of two-carbon products were changed significantly. In particular, acetic acid present in the medium as sodium acetate was consumed by L. brevis ATCC 14869 under extreme pH of both acid and alkaline conditions.

Improvement of Orchardgrass (Dactylis glomerata L.) Silage Quality by Lactic Acid Bacteria

  • Ilavenil, Soundharrajan;Muthusamy, Karnan;Jung, Jeong Sung;Lee, Bae Hun;Park, Hyung Soo;Choi, Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.4
    • /
    • pp.302-307
    • /
    • 2021
  • In the current study, lactic lactic acid bacteria (LAB) Lactobacillus plantarum and Pediococcus pentosaceus were used as a mixed additive for the production of Orchardgrass silage by ensiled method and nutritional change fermentation ability and microbial content of experimental silages. The addition of LAB to Orchardgrass during ensiling process rapidly reduced the pH of the silages than the non-inoculated silages. In addition, the lactic and acetic acid content of silage was increased by LAB strains than the non-inoculated silages whereas butyric acid content was reduced in silage treated with LAB. A microbiological study revealed that higher LAB but lower yeast counts were observed in inoculated silages compared to non-inoculated silage. Overall data suggested that the addition of LAB stains could have ability to induce the fermentation process and improve the silage quality via increasing lactic acid and decreasing undesirable microbes.

Effect of Maesil(Prunus mume Sieb. et Zucc) Juice on Yulmoo Mul-Kimchi Fermentation (매실즙이 열무 물김치의 발효숙성에 미치는 영향)

  • Jang Myung-Sook;Park Jung-Eun
    • Korean journal of food and cookery science
    • /
    • v.20 no.5
    • /
    • pp.511-519
    • /
    • 2004
  • The optional ingredient, Maesil juice, was adopted to improve the quality of Yulmoo Mul-Kimchi during fermentation. The final weight of the Maesil juice as a percentage of the water content in the Yulmoo Mul-Kimchi was adjusted to 0, 1, 3, 5 and 7%. The physicochemical, microbiological and sensory characteristics were determined during fermentation at 10$^{\circ}C$ over a 30 days period. After fermentation, the additions of 3 and 5% Maesil juice gave the highest pH values and lowest total acidities. With regard to the reducing sugars, the 3 and 5% treatments gave the highest contents. The number of the total cell count and lactic acid bacteria increased to their maxima during fermentation, but began to decrease during the latter stages. Here, the additions of 3 and 5% Maesil juice showed distinctive lower and higher numbers of total cells and lactic acid bacteria, respectively, during the latter stages of fermentation. With regard to the sensory evaluation on the addition of Maesil juice, the results obtained with 3 and 5% additions to the fermented Yulmoo Mul-Kimchi were favored for color, smell, sour and carbonated tastes and overall acceptability of the products. Therefore, the optimum levels of Maesil juice addition to Yulmoo Mul-Kimchi were estimated to be between 3 and 5%.

Wort Fermentation by Leuconostoc citreum Originated from Kimchi and Sensory Properties of Fermented Wort

  • Delgerzaya, Purev;Shin, Jin-Yeong;Kim, Kwang-Ok;Park, Jin-Byung
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1083-1090
    • /
    • 2009
  • Fermentation of wort was investigated with an ultimate goal to develop a fermented beverage rich in prebiotics and functional ingredients as well as desirable in flavors. Wort was fermented with Leuconostoc citreum HJ-P4 originated from kimchi and subjected to sensory descriptive analysis. L. citreum HJ-P4 produced various organic acids (e.g., lactic acid, acetic acid) as well as functional sugars (e.g., mannitol, panose) during wort fermentation. The concentration and ratio of lactic acid and acetic acid were significantly influenced by roasting conditions of malts used for wort preparation and aeration conditions during fermentation. The concentration of mannitol and panose varied depending on the sucrose content of wort and aeration conditions. Sensory characteristics of the fermented worts were clearly differentiated according to the roasting conditions of malts used for wort preparation and aeration conditions during fermentation. These results indicate that metabolite concentration of fermented wort and its sensory properties can be manipulated with roasting conditions of malts and fermentation conditions.