• Title/Summary/Keyword: lactic dehydrogenase

Search Result 157, Processing Time 0.022 seconds

Regulation of Metabolic Flux in Lactobacillus casei for Lactic Acid Production by Overexpressed ldhL Gene with Two-Stage Oxygen Supply Strategy

  • Ge, Xiang-Yang;Xu, Yan;Chen, Xiang;Zhang, Long-Yun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.81-88
    • /
    • 2015
  • This study describes a novel strategy to regulate the metabolic flux for lactic acid production in Lactobacillus casei. The ldhL gene encoding L-lactate dehydrogenase (L-LDH) was overexpressed in L. casei, and a two-stage oxygen supply strategy (TOS) that maintained a medium oxygen supply level during the early fermentation phase, and a low oxygen supply level in the later phase was carried out. As a consequence, a maximum L-LDH activity of 95.6 U/ml was obtained in the recombinant strain, which was over 4-fold higher than that of the initial strain. Under the TOS for L. casei (pMG-ldhL), the maximum lactic acid concentration of 159.6 g/l was obtained in 36 h, corresponding to a 62.8% increase. The results presented here provide a novel way to regulate the metabolic flux of L. casei for lactic acid production in different fermentation stages, which is available to enhance organic acid production in other strains.

Dynamic Modeling of Lactic Acid Fermentation Metabolism with Lactococcus lactis

  • Oh, Euh-Lim;Lu, Mingshou;Choi, Woo-Joo;Park, Chang-Hun;Oh, Han-Bin;Lee, Sang-Yup;Lee, Jin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.162-169
    • /
    • 2011
  • A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).

The Effect of Regular Exercise on the Level of Blood Lactate and LDH Production in College Women (운동습관이 혈액중 젖산농도 및 LDH 생성에 미치는 영향)

  • 남정혜
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.4
    • /
    • pp.355-359
    • /
    • 2001
  • The purpose of this study was to compare the level of blood glucose and lactate and also plasma LDH production of college women in relation to exercise. College female student which majored athletics (E, exercise group, n=43) were recruited and compared with college women (Control group, n=60). Anthropometric measurements, triceps skinfold thickness were measured of two groups. And body fat mass and waist and hip circumferences were measured and the concentrations of plasma glucose, lactic acid and lactic acid dehydrogenase (LDH) were also assayed. Average height and weight of E group were slightly higher than that of control group. but there is no difference in body mass index (BMI) and waist hip ratio (WHR) between two groups. The percentage of body fat and body fat mass(kg) in E group was slightly lower than that of control group. Plasma glucose and LDH levels of E group were higher than those of control group, and plasma lactic acid concentration was significantly increased.

  • PDF

Studies on Effects of Chloroform to the Tissue Lactic Dehydrogenase and Glutamic Dehydrogenase Activities of Rats (클로로포름이 백서장기(白鼠臟器)의 효소활성(酵素活性)에 관(關)한 연구(硏究))

  • Chun, Byung-Sam;Haw, Kum
    • Journal of Nutrition and Health
    • /
    • v.4 no.1
    • /
    • pp.21-28
    • /
    • 1971
  • 1. The effects of chloroform to the tissue lactic dehydrogenase (LDH) activities and its isozymes and to the tissue glutamic dehydrogenase (GDH) activities and its isoaymes are studied using the experimental albino male adult rats in this paper. The tissues studies are liver, kidney, heart, and brain. Besides the control group, two experimental groups are studied providing succeedingly 4 days interpariental administrations of chloroform, 0.0025ml and 0.025ml per day respectively. The changes of body weights, weights of organs, activities of GDH and LDH and their isozymes of each tissues, are analysed. 2. The body weights of rats are decreased due to the chloroform administration. 3. There are no significant differences of weights of organs due to the chloroform administration. 4. The significant decreases of tissue GDH activities and the significant changes in percent distribution of the GDH isozymes are found due to the chloroform administration. This weight be interpretated that chloroform effects to the protein and amino acid metabolism of rats. 5. Due to the chloroform administration, the significant changes in tissue LDH activities and in percent distribution of tissue LDH isozymes indicating the decreases of $LDH_1$ which is the aerobic heart type and the increase of $LDH_5$ which is the anaerobic muscle type, are observed. This could be estimated that chloroform effects to the carbohydrate metabolism, particularly to the anaerobic glycolysis of rats.

  • PDF

Development of an Enzyme Electrode Biosensor for Lactic Acid Bacteria (효소 전극을 이용한 유산균 측정 바이오센서 개발)

  • Park T. S.;Cho S. I.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.4 s.111
    • /
    • pp.249-253
    • /
    • 2005
  • This study was carried out to develop enzyme biosensor for lactic acid bacteria. Lactic acids produced by lactic acid bacteria (LAB) was measured and good correlation $R^2=0.98$ between LAB count and lactic acids concentration was found. Hydrogen ion produced by L-lactate dehydrogenase (L-LDH) was measured by a potentiometer. Glutamic-pyruvic transminase (GPT) was used for eliminating inhibitor in the reaction. Polyacrylamide gel was used for immobilizing matrix of the sensor. The biosensor was tested and showed good feasibility with $R^2=0.99$ on validation.

LACTIC ACID DEHYDROGENASE ISOENZYME IN THE PERIODIC AMPUTATED RAT INCISOR PULP (백서 전치 주기적절제시 치수내 LDH ISOENZYME에 관한 연구)

  • Choi, Kuen-Bae
    • The Journal of the Korean dental association
    • /
    • v.10 no.1
    • /
    • pp.15-21
    • /
    • 1972
  • In the periodic amputated rat incisor pulp, the distribution of five isoenzymes of lactic acid dehydrogenase was evaluated and the total LDH activity was assayed. This study hs established the followings; 1) It demonstrates the existence of five distinct isoenzymes of LDH, with LDH-1 and LDH-2 predominating, in the rat incisor pulp. 2) The total LDH activity in periodically amputated rat incisor pulp is markedly increased as compared to the normal rat incisor pulp. 3) It is possible that the periodic amputation of tooth effects the pattern of LDH isoenzymes in the pulp, especially LDH-1 and LDH-2 region.

  • PDF

Effect of hydrogen-rich water on the lactic acid level in metformin-treated diabetic rats under hypoxia

  • Zhao, Chuan;Guo, Yushu;Wang, Ruoxi;Cheng, Cheng;Chen, Xiangmei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.517-523
    • /
    • 2021
  • The present study aims to investigate the impact of hydrogen-rich water on the lactic acid level in metformin-treated diabetic rats under hypoxia. Thirty Sprague-Dawley rats were randomly divided into five groups, including normal diet group, and diabetes model (DM) group, DM + metformin treatment (DMM) group, DMM + hypoxia treatment (DMMH) group and DMMH + hydrogen-rich water (DMMHR) group. We found that the levels of lactic acid, pyruvate and lactate dehydrogenase were significantly lower in the blood of DMMHR group than DMMH group. Superoxide dismutase and glutathione levels in liver and heart were significantly higher in DMMH group after hydrogen-rich water treatment, while malondialdehyde and oxidized glutathione levels were decreased in DMMHR group when compared with DMMH group, which indicates that hydrogen-rich water could reduce oxidative stress. qPCR analysis demonstrated that that pro-apoptotic genes Bax/Caspase-3 were upregulated in DM group and metformin treatment suppressed their upregulation (DMM group). However, hypoxic condition reversed the effect of metformin on apoptotic gene expression, and hydrogen-rich water showed little effect on these genes under hypoxia. HE staining showed that hydrogen-rich water prevented myocardial fiber damages under hypoxia. In summary, we conclude that hydrogen-rich water could prevent lactate accumulation and reduce oxidant stress in diabetic rat model to prevent hypoxia-induced damages. It could be served as a potential agent for diabetes patients with metformin treatment to prevent lactic acidosis and reduce myocardial damages under hypoxic conditions.

Alteration of PMN Leukocyte Function by the Change of Sulfhydryl Group and Metabolism of Membrane Components (Sulfhydryl기와 세포막 구성성분의 대사 변화에 따른 다형핵 백혈구 기능의 변경)

  • Shin, Jeh-Hoon;Lee, Chung-Soo;Han, Eun-Sook;Shin, Yong-Kyoo;Lee, Kwang-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.75-85
    • /
    • 1989
  • In opsonized zymosan activated PMN leukocytes, N-ethylamleiamide and $Hg^{++}$, penetrable sulfhydryl group inhibitors, inhibited superoxide generation, NADPH oxidase activity and lysosomal enzyme (lactic dehydrogenase and ${\beta}-glucuronidase$) secretion. P-Chloromercuribenzoic acid and p-chloromercuribenzenesulfonic acid, surface sulfhydryl group inhibitors did not affect superoxide generation but effectively inhibited both NADPH oxidase activity and lysosomal enzyme secretion. During phagocytosis, contents of surface and soluble sulfhydryl groups were gradually decreased with increasing incubation times. N-ethylmaleiamide and $Hg^{++}$ caused a loss of both surface and soluble sulfhydryl groups. P-Chloromercuribenzoic acid and p-chloromercuribenzenesulfonic acid significantly decreased the surface sulfhydryl content but did not after soluble sulfhydryl groups. Cysteine and mercaptopropionylglycine inhibited superoxide generation and lysosomal enzyme secretion. Glutathione had no effect on superoxide generation but remarkably inhibited lactic dehydrogenase release. Suppression of superoxide generation by N-ethylmaleiamide was reversed by cysteine and mercaptopropionyl-glycine but not by glutathione. Inactivation of NADPH oxidase by N-ethylmaleiamide was prevented by glutathione, cysteine or mercaptopropionylglycine. Stimulated superoxide generaion by carbachol was completely abolished by N-ethylrnaleiamide and antagonized by atropine. Thus, the expression of PMN leukocyte response to external stimuli may be associated with the change of sulfhydryl groups content. It is suggested that lysosomal enzyme secretion is influenced by both surface and soluble sulfhydryl groups, whereas superoxide generation by intracellular soluble sulfhydryl groups.

  • PDF

Influence of Thyroxine on the Hepatotoxicity of Carbon Tetrachloride ($CC1_4$의 간장독작용(肝臟毒作用)에 미치는 Thyroxine의 영향(影響))

  • Hong, Ki-Sung;Cheon, Yun-Sook
    • The Korean Journal of Pharmacology
    • /
    • v.16 no.2 s.27
    • /
    • pp.31-38
    • /
    • 1980
  • Calvert et al. formulated the hypothesis that carbon tetrachloride ($CCl_4$) acted on the central nervous system to produce and intensify sympathetic discharge which resulted in anoxic necrosis of the liver. Recknagel suggested that the essential feature of $CCl_4$ hepatotoxicity depended on the cleavage of it to $CCl_3$(free radical) and the peroxidative decomposition of cytoplasmic membrane structural lipids. And there are many reports which show the increase of adrenergic activity in hyperthyroidism. In this paper, the influence of thyroxine on the hepatotexicity of carbon tetrachloride was investigated in mice. The results obtained were summarized as follows; 1) Hepatic total lipid and lipid peroxide contents were slightly decreased by L-sodium thyroxine injection(4mg/kg/day for 4days or 6days), but hepatic glycogen content was significantly decreased. 2) Hepatic total lipid and lipid peroxide contents and serum lactic dehydrogenase activity were significantly increased by $CCl_4$ (4 ml/kg single dose or triple dose: 4ml/kg/day for 3days), but hepatic glycogen content was significantly decreased. 3) The increase of hepatic total lipid and lipid peroxide contents and serum lactic dehydrogenase activity induced by $CCl_4$ were significantly inhitited by the pretreatment of thyroxine. 4) The decrease of hepatic glycogen induced by $CCl_4$ was not affected by the pretreatment of thyroxine.

  • PDF

Experimental research for the protective effect of Naoxingtong-containing serum on rat cerebral microvascular endothelial cells

  • Jun, Zhou;Jianyou, Guo;Jian, Guo;Lanfang, Li;Canghai, Li;Nan, Jiang;Shuying, Guo;Hairu, Huo;JiangTingliang, JiangTingliang
    • Advances in Traditional Medicine
    • /
    • v.5 no.2
    • /
    • pp.156-159
    • /
    • 2005
  • The protective effect of Naoxingtong (NXT) on rat cerebral microvascular endothelial cell (rCMEC) was investigated. rCMEC was injured in vitro by incubating for 4 hours at 100% NO in a hypoxia chamber. After treated with NXT-containing serum, the cellular viability rate (90.3%) was significantly elevated when compared with that of control group and the inhibitive rate of lactic dehydrogenase activity (9.2%) was far lower than the control group with dose-dependent effect. The results indicate that NXT can increase viability of rCMEC, and protect cell membrane from injury during hypoxia.