• Title/Summary/Keyword: lactic acid bacteria count

Search Result 207, Processing Time 0.032 seconds

Selection of indigenous starter culture for safety and its effect on reduction of biogenic amine content in Moo som

  • Tangwatcharin, Pussadee;Nithisantawakhup, Jiraroj;Sorapukdee, Supaluk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1580-1590
    • /
    • 2019
  • Objective: The aims of this study were to select one strain of Lactobacillus plantarum (L. plantarum) for a potential indigenous safe starter culture with low level antibiotic resistant and low biogenic amine production and evaluate its effect on biogenic amines reduction in Moo som. Methods: Three strains of indigenous L. plantarum starter culture (KL101, KL102, and KL103) were selected based on their safety including antibiotic resistance and decarboxylase activity, and fermentation property as compared with a commercial starter culture (L. plantarum TISIR543). Subsequently, the effect of the selected indigenous safe starter culture on biogenic amines formation during Moo som fermentation was studied. Results: KL102 and TISIR 543 were susceptible to penicillin G, tetracycline, chloramphenicol, erythromycin, gentamycin, streptomycin, vancomycin, ciprofloxacin and trimethoprim (MIC90 ranging from 0.25 to $4{\mu}g/mL$). All strains were negative amino acid-decarboxylase for lysis of biogenic amines in screening medium. For fermentation in Moo som broth, a relatively high maximum growth rate of KL102 and TISIR543 resulted in a generation time than in the other strains (p<0.05). These strain counts were constant during the end of fermentation. Similarly, KL102 or TISIR543 addition supported increases of lactic acid bacterial count and total acidity in Moo som fermentation. For biogenic amine reduction, tyramine, putrescine, histamine and spermine contents in Moo som decreased significantly by the addition KL102 during 1 d of fermentation (p<0.05). In final product, histamine, spermine and tryptamine contents in Moo som inoculated with KL102 were lower amount those with TISIR543 (p<0.05). Conclusion: KL102 was a suitable starter culture to reduce the biogenic amine formation in Moo som.

Changes of Chemical Composition and Microflora in Commercial Kimchi (시판 김치의 발효 온도별 성분과 미생물 변화)

  • Shin, Dong-Hwa;Kim, Moon-Sook;Han, Ji-Sook;Lim, Dae-Kwan;Bak, Wan-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.137-145
    • /
    • 1996
  • Chemical changes, lactic acid bacteria and yeast counts in kimchi prepared by a commercial manufacturer in large scale were monitored at different fermentation temperature. The optimum pH of kimchi, around pH 4.2, reached within 2 days at $25^{\circ}C$, 3 days at $15^{\circ}C$ and 23 days at $5^{\circ}C$ fermentation, respectively. The optimum acidity calculated as lactic acid was not exactly coincident with pH. The total viable count reached at maximum within 2 days at $25^{\circ}C$, 6 days at $15^{\circ}C$ and 12 days at $5^{\circ}C$ fermentation, respectively. The identified strains of Lactobacilli during kimchi fermentation were L. brevis, L. plantarum and L. acidophilus with 3 unidentified strains. L. brevis, L. plantarum appeared from the first stage of fermentation to the terminal at $15^{\circ}C$ and $25^{\circ}C$ with keeping a constant level of viable number. In case of Leuconostoc species, L. mesenteroides subsp. mesenteroides was identified. This strain increased in viable number at the beginning of fermentation and dropped sharply at all fermentation temperatures. Pediococcus species including P. pentosaceus and one unidentified strain increased at the first stage of fermentation and decreased after on. Streptococcus faecium subsp. casseliflavus which appeared at the middle stage and Aerococcus viridans which was sole strain were also confirmed during kimchi fermentation. Cryptococcus laurenti was identified at all fermentation temperature and disappeared at the first stage of fermentation. It was reappeared 10 days only after fermentation at $25^{\circ}C$.

  • PDF

Shelf Life of Freeze Dried Product of Lactic Acid Bacteria Fermented Food Prepared from Milk or Egg White Powder (우유 또는 난백분말로 만든 젖산균발효식품을 동결건조한 제품의 저장성)

  • Ko, Young-Tae;Kang, Jung-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1349-1356
    • /
    • 1999
  • Freeze dried products of lactic acid bacteria fermented food prepared from milk or egg white powder(EWP) were stored at $28^{\circ}C.\;5^{\circ}C$ and $-18^{\circ}C$ for 20 weeks. Properties of stored, freeze dried product and viable cell count. pH and organoleptic properties of stored, reconstituted product were investigated. (1) The viable cell count of reconstituted milk or EWP product stored at $5^{\circ}C\;or\;-18^{\circ}C$ was not changed markedly. However, the viable cell count of milk or EWP product stored at $28^{\circ}C$ was reduced during storage and it was changed substantially between 4 weeks and 5 weeks. However, pH of all samples stored at three different temperature was not changed. (2) Color of freeze dried product prepared from EWP became clearly brown at 16 weeks. (3) Appearance of reconstituted milk product stored at $5^{\circ}C\;or\;-18^{\circ}C$ for 20 weeks was not changed. However, homogeneity and solubility of reconstituted milk product stored at $28^{\circ}C$ for 20 weeks were reduced. Taste, odor and texture of reconstituted milk product stored at $28^{\circ}C$ for 20 weeks were markedly changed. (4) Viscosity of reconstituted EWP product stored for 20 weeks was slightly reduced. Solubility of reconstituted EWP product stored at $28^{\circ}C$ for 20 weeks was reduced and its taste and odor were markedly changed. Texture of reconstituted EWP product stored at $28^{\circ}C$ became rough.

  • PDF

A Study on The Kimchi Made with Green Pepper Powder (청고춧가루를 이용한 김치 제조에 관한 연구)

  • Jeong, Eun-Ja;Seo, Jeong-Sook;Bang, Byung-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.20 no.1
    • /
    • pp.63-67
    • /
    • 2007
  • In order to optimize use of pepper resources, and to aid farmers in increasing their income, we compared two types of kimchies made from red and green pepper powder. Qualitative differences were examined during fermantation at $4^{\circ}C$. There was no significant change in pH patterns, acidity, total bacteria cell count and total lactic acid bacteria cell count between the red and green pepper powder, however, sensory evaluation, indicated that Kimchi made with green pepper powder showed lower, sensory scores than Kimchi made with red pepper powder with respect to overall acceptability. Eventhough the sensory scores of green pepper is lower than that of red pepper, the quality of Kimchies was not different between them. Considering that the price of green pepper is far cheaper than red pepper powder, farmers should consider actively the production of green pepper Kimches in order to cut down expenses fur the production of Kimches.

Effects of D-Tagatose on the Growth of Intestinal Microflora and the Fermentation of Yogurt (장내 세균의 생육과 요구르트의 발효특성에 대한 D-Tagatose의 영향)

  • Kang, Kyoung-Myoung;Park, Chang-Su;Lee, Shin-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.348-354
    • /
    • 2013
  • To investigate the effect of tagatose on the growth of intestinal bacteria, various species were cultivated individually on m-PYF medium containing tagatose as a carbon source. The tagatose inhibited the growth of intestinal harmful microorganisms such as Staphylococcus aureus subsp. aureus, Listeria monocytogenes, Vibrio parahaemolyticus, Salmonella Typhimurium, and Pseudomonas fluorescens. In the case of beneficial microorganisms found in the intestine, Lactobacillus casei grew effectively on m-PYF medium containing tagatose, while Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc citreum, and Lactobacillus acidophilus did not. To examine the effect of tagatose on fermentation by Lactobacillus casei, yogurt was prepared with tagatose as a carbon source. The resulting acid production stimulated a remarkable growth of lactic acid bacteria in the yogurt. After fermentation for 24 hours, the viable cell count and viscosity of yogurt were above 8.49 log CFU/mL and 1,266 cps, respectively. Moreover, sensory evaluations showed that the yogurt supplemented with tagatose was as acceptable as control yogurt prepared with glucose as a carbon source. The changes in pH, titratable acidity and lactic acid bacteria in yogurt prepared with tagatose did not show any significant changes during storage for 15 days at $4^{\circ}C$.

Microbiological and chemical properties of sourdough fermented with probiotic lactic acid bacteria (프로바이오틱 유산균으로 제조한 사워도우의 미생물학적 및 이화학적 특성)

  • Lim, Eun-Seo
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.84-97
    • /
    • 2016
  • Isolates from Korean fermented soybean paste were identified as Enterococcus faecium SBP12, Pediococcus halophilus SBP20, Lactobacillus fermentum SBP33, Leuconostoc mesenteroides SBP37, Pediococcus pentosaceus SBP41, Lactobacillus brevis SBP49, Lactobacillus acidophilus SBP55, and Enterococcus faecalis SBP58 according to conventional morphological and biochemical characteristics, carbohydrate fermentation profiling, and 16S rRNA sequence comparison. Strain SBP20, SBP33, SBP49, and SBP55 showed very resistance to simulated gastric and intestinal juices with final populations exceeding 6 log CFU/ml, whereas cells of SBP12 and SBP58 after exposure to low pH were dramatically decreased within 2 h. Among 4 strains having good tolerance to gastrointestinal conditions, the high adhesive ability to HT-29 cells, antibiotic resistance, and antimicrobial activity against food-borne pathogens Bacillus cereus ATCC 11778 and Staphylococcus aureus ATCC 6538 were observed with SBP49 and SBP55, therefore, these two strains were confirmed as putative probiotic candidates. There was no significant difference between the sourdoughs fermented with SBP49 and SBP55 with respect to the values of pH, total titratable acidity, and viable cell count. During sourdough fermentation, SBP49 strain produced significantly greater amounts of lactic acid than SBP55 strain, which secreted large quantities of hydrogen peroxide. SBP49 and SBP55 strains producing the antimicrobial substances such as lactic acid, hydrogen peroxide, and bacteriocin effectively inhibited B. cereus and S. aureus inoculated in the sourdough.

Edible Culture Media from Cereals and Soybeans for Pre-cultivation of Lactic Acid Bacteria (곡류 및 두류를 이용한 젖산균 전배양용 식용 배지의 제조)

  • Park, So-Lim;Park, Sunhyun;Jang, Jieun;Yang, Hye-Jung;Moon, Sung-Won;Lee, Myung-Ki
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.6
    • /
    • pp.991-995
    • /
    • 2013
  • This study was conducted to develop an edible culture media with various types of cereals and soybeans for the pre-cultivation of lactic acid bacteria (LAB). To manufacture the edible culture media, LAB enrichment media were prepared using cereals such as brown rice (including germinated brown rice, glutinous brown rice, and germinated glutinous brown rice), yellow soybeans (including yellow soybeans, hulled yellow soybeans, germinated yellow soybeans, hulled and germinated yellow soybeans), and black soybeans (black soybeans, hulled black soybeans, germinated black soybeans, hulled and germinated black soybeans). Seven species of LAB were used in the experiment: Lactobacillus (Lb.) farciminis, Lb. homohiochii, Lb. pentosus, Lb. plantarum, Leuconostoc (Leu.) paramesenteroides, Leu. citreum, and Leu. lactis. For edible culture media from cereals, the average viable cell count of the seven starter cultures was 7.6~8.0 log CFU/mL, while that of the MRS culture medium, a synthetic medium, was 9.2 log CFU/mL; thus proliferation was lower by about 1~2 log CFU/mL in starter cultures from cereals compared to the synthetic medium. In the case of the edible culture media from soybeans, most bacteria showed higher proliferation in the hulled and germinated soybean media. In particular, Lb. plantarum showed the highest cell count at 10.08 log CFU/mL. In the case of edible culture media from black soybeans, the proliferation rate was higher in the hulled and germinated black soybean medium. Lb. homohiochii showed the highest proliferation in the hulled and germinated black soybean medium at 9.90 log CFU/mL. All results show that edible culture media using cereals and soybeans are generally good for LAB. Especially, hulled and germinated black soybeans are optimal for the pre-cultivation of LAB medium.

Properties of Sourdough-added Bread (Sourdough를 이용한 제빵의 특성)

  • Chung, Hyun-Chae
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.643-648
    • /
    • 2008
  • The principal objective of this study was to evaluate the effects of the addition of sourdough to bread dough, specifically with regard to the physicochemical characteristics of bread dough, organoleptic evaluation, and bread storage. Marked increases in lactic acid bacterial counts $10^{9-10}CFU/g$ in dough samples with 30, 50, and 100% of added sourdough to the respective bread dough were observed after the first fermentation period of the dough, but decreases were observed in yeast cells. The highest overall acceptance scores were recorded for the 100% sourdough-added bread, and almost no differences in taste and texture were detected between the regular bread (control bread) and sourdough-added bread on the sensory evaluations, with slightly lower evaluation scores (for sour taste) in the sourdough-added bread. The sourdoughadded bread also showed retarded mold growth in the bread on our storage tests. Six days had elapsed prior to the appearance of mold growth in the sourdough-added bread, whereas three days elapsed in the regular bread. The more sourdough was added to the dough, the less was the total count in bread. Increases of 13.1, 20.9, and 36.2% in the retardation of starch retrogradation of the bread were observed as the result of additional increases in sourdough quantity to bread at 30, 50, and 100%, respectively.

Effects of Phosphates on the Growth of Lactic Acid Bacteria (인산(燐酸) 염(鹽)이 유산균(乳酸菌)의 생장(生長)에 미치는 영향(影響))

  • Yu, Tae-Jong;Kim, Il-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.200-205
    • /
    • 1979
  • Effects of monosodium phosphate, disodium phosphate, trisodium phosphate, ${\alpha}-polygel$, sodium ultrametaphosphate and sodium tripolyphosphate on the growth of bacteria, pH and acidity in single culture of Lactobacillus bulgaricus and mixed-culture of Lactobacillus bulgaricus and Streptococcus thermophilus were investigated. Phosphates exerted definite effect in enhancing the growth of the bacteria and acidity of the fermented milk. For the single-culture of Lactobacillus bulgaricus monosodium phosphate and sodium tripolyphosphate were most effective in terms of bacterial growth and acidity, whereas for the mixed-culture of Lactobacillus bulgaricus and Streptococcus thermophilus monosodium phosphate and disodium phosphate showed the best results. In the presence of the phosphates, particularly of trisodium phosphate, the decrease of viable count of bacteria in fermented milk during storage was reduced significantly. The stability of the fermented milk prepared with the mixed-culture of Lactobacillus bulgaricus and Streptococcus thermophilus was improved by the addition of phosphates, particularly of monosodium phosphate.

  • PDF

Effect of the Fish Meat Hydrolysate on the Growth of Lactic Acid Bacteria (유산균(乳酸菌) 성장(成長)에 미치는 어육단백질분해물(魚肉蛋白質分解物)의 영향(影響))

  • Lee, Eun Bo;Kim, Jong Woo
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.1
    • /
    • pp.120-132
    • /
    • 1984
  • In order to clarify the effect of the fish meat hydrolysate on the growth of lactic acid bacteria(Str. lactis, Str. thermophibus, L. bulgaricus, L. acidophilus, and L. helveticus), the optimum conditions for hydrolyzing the fish meat were examined, and changes of the acid production, viable cell count of lactic acid bacteria and the charge of pH of the culture medium by addition of the fish meat hydrolysate were tested. The results were as follows: 1. When the hydrolysis of back muscle of mackerel was proceeded at $50^{\circ}C$ and at pH 8, for 48 hours adding 6% pancreatin of the protein content in the substrate, the best result was obtained. 2. The composition of the fish meat hydrolysate were 53.6% moisture, 32.4% protein, 1.0% fat, 10.7% carbohydrate, and 3.2% ash. 3. Above 0.1% of the fish meat hydrolysate in the culture medium, the acidity of the culture medium by Sir. lactis and Str. thermophilus were increased remarkably. The acidity of the culture medium by L. acidophilus and L. helveticus were increased in above 0.2% fish meat hydrolysate in the culture medium. but L. bulgaricus was not effected by the fish meat hydrolysate. 4. The pH of the culture medium during incubating Str. laclis and Sir. thermophilus failed obviously by adding the fish meat hydrolysate. But in the cases of L. bulgaricus, L. acidophilus, and L. helveticus, the pH were not changed clearly. 5. The viable cell count in all bacterial strains tested here were elevated by increasing the concentration of the fish meat hydrolysate.

  • PDF