DOI QR코드

DOI QR Code

Microbiological and chemical properties of sourdough fermented with probiotic lactic acid bacteria

프로바이오틱 유산균으로 제조한 사워도우의 미생물학적 및 이화학적 특성

  • Lim, Eun-Seo (Department of Food Science & Nutrition, Tongmyong University)
  • 임은서 (동명대학교 식품영양학과)
  • Received : 2016.03.03
  • Accepted : 2016.03.17
  • Published : 2016.03.31

Abstract

Isolates from Korean fermented soybean paste were identified as Enterococcus faecium SBP12, Pediococcus halophilus SBP20, Lactobacillus fermentum SBP33, Leuconostoc mesenteroides SBP37, Pediococcus pentosaceus SBP41, Lactobacillus brevis SBP49, Lactobacillus acidophilus SBP55, and Enterococcus faecalis SBP58 according to conventional morphological and biochemical characteristics, carbohydrate fermentation profiling, and 16S rRNA sequence comparison. Strain SBP20, SBP33, SBP49, and SBP55 showed very resistance to simulated gastric and intestinal juices with final populations exceeding 6 log CFU/ml, whereas cells of SBP12 and SBP58 after exposure to low pH were dramatically decreased within 2 h. Among 4 strains having good tolerance to gastrointestinal conditions, the high adhesive ability to HT-29 cells, antibiotic resistance, and antimicrobial activity against food-borne pathogens Bacillus cereus ATCC 11778 and Staphylococcus aureus ATCC 6538 were observed with SBP49 and SBP55, therefore, these two strains were confirmed as putative probiotic candidates. There was no significant difference between the sourdoughs fermented with SBP49 and SBP55 with respect to the values of pH, total titratable acidity, and viable cell count. During sourdough fermentation, SBP49 strain produced significantly greater amounts of lactic acid than SBP55 strain, which secreted large quantities of hydrogen peroxide. SBP49 and SBP55 strains producing the antimicrobial substances such as lactic acid, hydrogen peroxide, and bacteriocin effectively inhibited B. cereus and S. aureus inoculated in the sourdough.

재래식 된장으로부터 분리된 유산균은 형태학적, 생화학적 특성과 당 발효능 및 16S rRNA 염기서열 분석을 통해 Enterococcus faecium SBP12, Pediococcus halophilus SBP20, Lactobacillus fermentum SBP33, Leuconostoc mesenteroides SBP37, Pediococcus pentosaceus SBP41, Lactobacillus brevis SBP49, Lactobacillus acidophilus SBP55 및 Enterococcus faecalis SBP58로 동정되었다. SBP20, SBP33, SBP49와 SBP55 균주는 인공 위액과 담즙액 내에서 6 log cycle 이상 생균수를 유지하였으나, SBP12와 SBP58은 낮은 pH 하에서 2시간만에 균수가 급격하게 감소되었다. 특히, SBP49와 SBP55는 HT-29 세포에 대한 부착능이 높고, 항생제에 대한 저항성이 크며, Bacillus cereus ATCC 11778과 Staphylococcus aureus ATCC 6538의 식중독균에 대한 항균활성을 나타내었으므로, 이 두 균주는 프로바이오틱 선발 기준에 적합한 것으로 추정된다. 게다가 SBP49와 SBP55를 이용하여 사워도우를 제조한 결과, 발효 직후 도우 내 pH, 산도 및 유산균수에는 유의한 차이가 없었으나, SBP49는 많은 양의 유산을 생산한 반면, SBP55는 과산화수소를 더 많이 생산하였다. SBP49와 SBP55 유산균은 유산과 과산화수소뿐만 아니라 박테리오신 등의 항균물질을 생산하므로 사워도우 내 존재하는 식중독균 저해에 효과적이었다.

Keywords

References

  1. Ali, A.A. 2010. Beneficial role of lactic acid bacteria in food preservation and human health : a review. Res. J. Microbiol. 5, 1213-1221. https://doi.org/10.3923/jm.2010.1213.1221
  2. Arendt, E.K., Ryan, L.A.M., and Dal Bello, F. 2007. Impact of sourdough on the texture of bread. Food Microbiol. 24, 165-174. https://doi.org/10.1016/j.fm.2006.07.011
  3. Argyri, A.A., Zoumpopoulou, G., Karatzas, K.A.G., Tsakalidou, E., Nychas, G.J.E., Panagou, E.Z., and Tassou, C.C. 2013. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 33, 282-291. https://doi.org/10.1016/j.fm.2012.10.005
  4. Ashraf, R. and Shah, N.P. 2011. Antibiotic resistance of probiotic organisms and safety of probiotic dairy products. Int. Food Res. J. 18, 837-853.
  5. Barber, S. and Baguena, R. 1989. Microflora of the sourdough of wheat flour bread. XI. Changes during fermentation in the microflora of sourdoughs prepared by multi-stage process and of bread doughs. Rev. Agroquim. Technol. Aliment. 29, 478-491.
  6. Bauer, A.W., Kirby, W.M., Sherris, J.C., and Turck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493
  7. Caplice, E. and Fitzgerald, G.F. 1999. Food fermentations: role of microorganisms in food production and preservation. Int. J. Food Microbiol. 50, 131-149. https://doi.org/10.1016/S0168-1605(99)00082-3
  8. Cebrian, R., Banos, A., Valdivia, E., Perez-Pulido, R., Martinez-Bueno, M., and Maqueda, M. 2012. Characterization of functional, safety, and probiotic properties of Enterococcus faecalis UGRA10, a new AS-48-producer strain. Food Microbiol. 30, 59-67. https://doi.org/10.1016/j.fm.2011.12.002
  9. Chavan, R.S. and Chavan, S.R. 2011. Sourdough Technology- a traditional way for wholesome foods: a review. Compr. Rev. Food Sci. F. 10, 170-183.
  10. Cho, K.M. and Seo, W.T. 2007. Bacterial diversity in Korean traditional soybean fermented foods (doenjang and ganjang) by 16S rRNA gene sequence analysis. Food Sci. Biotechnol. 16, 320-324.
  11. Choi, H.J., Kim, Y.W., Hwang, I.Y., Kim, J.H., and Yoon, S. 2012. Evaluation of Leuconostoc citreum HO12 and Weissella koreensis HO20 isolated from kimchi as a starter culture for whole wheat sourdough. Food Chem. 134, 2208-2216. https://doi.org/10.1016/j.foodchem.2012.04.047
  12. Corsetti, A., Gobbetti, M., Rossi, J., and Damiani, P. 1998. Antimould activity of sourdough lactic acid bacteria: identification of mixture of organic acids produced by Lactobacillus sanfrancisco CBI. Appl. Microbiol. Biotechnol. 50, 253-256. https://doi.org/10.1007/s002530051285
  13. Corsetti, A., Gobbetti, M., and Smacchi, E. 1996. Antibacterial activity of sourdough lactic acid bacteria: isolation of a bacteriocin-like inhibitory substance from Lactobacillus sanfrancisco C57. Food Microbiol. 13, 447-456. https://doi.org/10.1006/fmic.1996.0051
  14. Corsetti, A. and Settanni, L. 2007. Lactobacilli in sourdough fermentation. Food Res. Int. 40, 539-558. https://doi.org/10.1016/j.foodres.2006.11.001
  15. Corsetti, A., Settanni, L., and Van Sinderen, D. 2004. Characterization of bacteriocin-like inhibitory substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. J. Appl. Microbiol. 96, 521-534. https://doi.org/10.1111/j.1365-2672.2004.02171.x
  16. De Vuyst, L. and Neysens, P. 2005. The sourdough microflora: biodiversity and metabolic interactions. Trends Food Sci. Technol. 16, 43-56. https://doi.org/10.1016/j.tifs.2004.02.012
  17. De Vuyst, L. and Vancanneyt, M. 2007. Biodiversity and identification of sourdough lactic acid bacteria. Food Microbiol. 24, 120-127. https://doi.org/10.1016/j.fm.2006.07.005
  18. Ehrmann, M.A., Kurzak, P., Bauer, J., and Vogel, R.F. 2002. Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. J. Appl. Microbiol. 92, 966-975. https://doi.org/10.1046/j.1365-2672.2002.01608.x
  19. Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66, 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  20. Ganzle, M.G., Holtzel, A., Walter, J., Jung, G., and Hammes, W.P. 2000. Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl. Environ. Microbiol. 66, 4325-4333. https://doi.org/10.1128/AEM.66.10.4325-4333.2000
  21. Gilliland, S.E. 1969. Enzymatic determination of residual hydrogen peroxide in milk. J. Dairy Sci. 52, 321-324. https://doi.org/10.3168/jds.S0022-0302(69)86554-9
  22. Gobbetti, M. 1998. The sourdough microflora: interactions of lactic acid bacteria and yeasts. Trends Food Sci. Technol. 9, 267-274. https://doi.org/10.1016/S0924-2244(98)00053-3
  23. Gobbetti, M., De Angelis, M., Corsetti, A., and Di Cagno, R. 2005. Biochemistry and physiology of sourdough lactic acid bacteria. Trends Food Sci. Technol. 16, 57-59. https://doi.org/10.1016/j.tifs.2004.02.013
  24. Hammes, W.P., Brandt, M.J., Francis, K.L., Rosenheim, M., Seitter, F.H., and Vogelmann, S. 2005. Microbial ecology of cereal fermentations. Trends Food Sci. Technol. 16, 4-11. https://doi.org/10.1016/j.tifs.2004.02.010
  25. Heller, J.K. 2001. Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am. J. Clin. Nutr. 73, 374S-379S. https://doi.org/10.1093/ajcn/73.2.374s
  26. Hole, H., Nilssen, O., and Nes, I.F. 1991. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J. Bacteriol. 173, 3879-3887. https://doi.org/10.1128/jb.173.12.3879-3887.1991
  27. Jeong, D.W., Kim, H.R., Jung, G.S., Han, S.H., Kim, C.T., and Lee, J.H. 2014. Bacterial community migration in the ripening of Doenjang, a traditional Korean fermented soybean food. J. Microbiol. Biotechnol. 24, 648-660. https://doi.org/10.4014/jmb.1401.01009
  28. Kashket, E.R. 1987. Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol. Rev. 46, 233-244. https://doi.org/10.1111/j.1574-6968.1987.tb02463.x
  29. Katina, K., Sauri, M., Alakomi, H.L., and Mattila-Sandholm, T. 2002. Potential of lactic acid bacteria to inhibit rope spoilage in wheat sourdough bread. LWT-Food Sci. Technol. 35, 38-45. https://doi.org/10.1006/fstl.2001.0808
  30. Kawai, Y., Saito, T., Toba, T., Samant, S.K., and Itoh, T. 1994. Isolation and characterization of a highly hydrophobic new bacteriocin (gassericin A) from Lactobacillus gasseri LA39. Biosci. Biotech. Biochem. 58, 1218-1221. https://doi.org/10.1271/bbb.58.1218
  31. Lorca, G.L., Wadstrom, T., Valdez, G.F., and Ljungh, A. 2001. Lactobacillus acidophilus autolysins inhibit Helicobacter pylori in vitro. Curr. Microbiol. 42, 39-44. https://doi.org/10.1007/s002840010175
  32. Luangsakul, N., Keeratipibul, S., Jindamorakot, S., and Tanasupawat, S. 2009. Lactic acid bacteria and yeasts isolated from the starter doughs for Chinese steamed buns in Thailand. LWT-Food Sci. Technol. 42, 1404-1412. https://doi.org/10.1016/j.lwt.2009.03.007
  33. Maragkoudakis, P.A., Zoumpopoulou, G., Christos, M., Kalantzopoulos, G., Pot, B., and Tsakalidou, E. 2006. Probiotic potential of Lactobacillus strains isolates from dairy products. Int. Dairy J. 16, 189-199. https://doi.org/10.1016/j.idairyj.2005.02.009
  34. Messens, W. and De Vuyst, L. 2002. Inhibitory substances produced by lactobacilli isolated from sourdoughs - a review. Int. J. Food Microbiol. 72, 31-43. https://doi.org/10.1016/S0168-1605(01)00611-0
  35. Mundt, J.O. 1986. Lactobacillus, pp. 577-592. In Sneath, P.H.A., Mair, N.S., Sharpe, M.E., and Holt, J.G. (eds.) Bergey's Manual of Systematic Bacteriology, Williams & Wilkins, Baltimore, MS, USA.
  36. Oh, Y.J. and Jung, D.S. 2015. Evaluation of probiotic properties of Lactobacillus and Pediococcus strains isolation from Omegisool, a traditionally fermented millet alcoholic beverage in Korea. LWT-Food Sci. Technol. 63, 437-444. https://doi.org/10.1016/j.lwt.2015.03.005
  37. Otero, M.C. and Nader-Macias, M.E. 2006. Inhibition of Staphylococcus aureus by $H_2O_2$-producing Lactobacillus gasseri isolated from the vaginal tract of cattle. Anim. Reprod. Sci. 96, 35-46. https://doi.org/10.1016/j.anireprosci.2005.11.004
  38. Ouwehand, A.C. and Salminen, S. 2003. In vitro adhesion assays for probiotics and their in vivo relevance: a review. Microb. Ecol. Health D. 15, 175-184. https://doi.org/10.1080/08910600310019886
  39. Paramithiotis, S., Gioulatos, S., Tsakalidou, E., and Kalantzopoulos, G. 2006. Interactions between Saccharomyces cerevisiae and lactic acid bacteria in sourdough. Process Biochem. 41, 2429-2433. https://doi.org/10.1016/j.procbio.2006.07.001
  40. Plessas, S., Bosnea, L., Psarianos, C., Koutinas, A.A., Marchant, R., and Banat, I.M. 2008. Lactic acid production by mixed cultures of Kluyveromyces marxianus, Lactobacillus delbrueckii spp. bulgaricus and Lactobacillus helveticus. Bioresource Technol. 99, 5951-5955. https://doi.org/10.1016/j.biortech.2007.10.039
  41. Ranadheera, R.D.C.S., Baines, S.K., and Adams, M.C. 2010. Importance of food in probiotic efficacy. Food Res. Int. 43, 1-7. https://doi.org/10.1016/j.foodres.2009.09.009
  42. Rocha, J.M. and Malcata, F.W. 2012. Microbiological profile of maize and rye flours, and sourdough used for the manufacture of traditional Portuguese bread. Food Microbiol. 31, 72-88. https://doi.org/10.1016/j.fm.2012.01.008
  43. Saarela, M., Mogensen, G., Fonden, R., Matto, J., and Mattila-Sandholm, T. 2000. Probiotic bacteria: safety, functional and technological properties. J. Biotechnol. 84, 197-215. https://doi.org/10.1016/S0168-1656(00)00375-8
  44. Salminen, S., Isolauri, E., and Salminen, E. 1996. Probiotics and stabilization of the gut mucosal barrier. Asia Pacific J. Clin. Nutr. 5, 53-56.
  45. Servin, A.L. and Coconnier, M.H. 2003. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract. Res. Clin. Gastroenterol. 17, 741-754. https://doi.org/10.1016/S1521-6918(03)00052-0
  46. Settanni, L., Massitti, O., Van Sinderen, D., and Corsetti, A. 2005. In situ activity of a bacteriocin-producing Lactococcus lactis strain. Influence on the interactions between lactic acid bacteria during sourdough fermentation. J. Appl. Microbiol. 99, 670-681. https://doi.org/10.1111/j.1365-2672.2005.02647.x
  47. Sgouras, D., Maragkoudakis, P., Petraki, K., Martine-Gonzalez, B., Eriotou E., Michopoulas, S., Kalantzopoulos, G., Tsakalidou, E., and Mentis, A. 2004. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strains Shirota. Appl. Environ. Microbiol. 70, 518-526. https://doi.org/10.1128/AEM.70.1.518-526.2004
  48. Shah, N.P. and Ravula, R.R. 2002. Influence of water activity on fermentation, organic acids production and viability of yogurt and probiotic bacteria. Aust. J. Dairy Technol. 55, 127-131. https://doi.org/10.1046/j.1471-0307.2002.00044.x
  49. Shokryazdan, P., Sieo, C.C., Kalavathy, R., Liang, J.B., Alitheen, N.B., Jahromi, M.F., and Ho, Y.W. 2014. Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. BioMed. Res. Int. 2014, 1-16.
  50. Soccol, C.R., De Souza Vandenberghe, L.P., Spier, M.R., Medeiros, A.B.P., Yamaguichi, C.T., De Dea Lindner, J., Pandey, A., and Thomaz-Soccol, V. 2010. The potential of probiotics: a review. Food Technol. Biotechnol. 48, 413-434.
  51. Spicher, G. and Mastik, G. 1988. Interactions between the lactobacilli of sourdough and flour microflora. Getreide Mehl. Brot. 42, 338-342.
  52. Spicher, G., Rabe, E., Sommer, R., and Stephan, H. 1981. The microflora of sourdough.XIV. Communication: About the behavior of homofermentative sourdough bacteria and yeasts in mixed culture. Z. Lebensm. Unters. Forsch. 173, 291-296. https://doi.org/10.1007/BF01042584
  53. Suskovic, J., Kos, B., Beganovic, J., Pavunc, A.L., Habjanic, K., and Matosic, S. 2010. Antimicrobial activity-the most important property of probiotic and starter lactic acid bacteria. Food Technol. Biotechnol. 48, 296-307.
  54. Theron, M.M. and Lues, J.F.R. 2010. Mechanisms of microbial inhibition, pp. 117-150. In Organic acids and food preservation. CRC Press, Boca Raton, USA.
  55. Tuomola, E.M. and Salminen, S.J. 1998. Adhesion of some probiotic and diary Lactobacillus strains to Caco-2 cell cultures. Int. J. Food Microbiol.41, 45-51. https://doi.org/10.1016/S0168-1605(98)00033-6
  56. Velez, M.P., De Keersmaecker, S.C., and Vanderleyden, J. 2007. Adherence factors of Lactobacillus in the human gastrointestinal tract. FEMS Microbiol. Lett. 276, 140-148. https://doi.org/10.1111/j.1574-6968.2007.00908.x
  57. Veskovic Moracanin, S., Dukic, D.A., and Memisi, N.R. 2014. Bacteriocins produced by lactic acid bacteria-a review. APTEFF 45, 271-283.
  58. Vogel, R.F., Bocker, G., Stolz, P., Ehrmann, M., Fanta, D., Ludwig, W., Pot, B., Kersters, K., Schleifer, K.H., and Hammes, W.P. 1999. Identification of lactobacilli from sourdough and description of Lactobacillus pontis sp. nov. Int. J. System. Bacteriol. 44, 223-229.

Cited by

  1. Preparation and functional properties of probiotic and oat-based synbiotic yogurts fermented with lactic acid bacteria 2017, https://doi.org/10.1007/s13765-017-0333-5
  2. Effect of the mixed culture of heterofermentative lactic acid bacteria and acid-tolerant yeast on the shelf-life of sourdough vol.52, pp.4, 2016, https://doi.org/10.7845/kjm.2016.6069
  3. 렌넷 커드 내 히스타민 생성에 관한 프로바이오틱 유산균이 생산한 항균 물질의 영향 vol.54, pp.2, 2016, https://doi.org/10.7845/kjm.2018.7093
  4. 전통 발효 된장으로부터 분리된 바이오제닉 아민 생성 바실러스균에 대한 유산균의 항균 활성 vol.54, pp.4, 2018, https://doi.org/10.7845/kjm.2018.8058
  5. 재래식 된장으로부터 아민 산화 효소를 생산하는 프로바이오틱 바실러스균의 분리 동정 vol.37, pp.6, 2016, https://doi.org/10.12925/jkocs.2020.37.6.1535