• Title/Summary/Keyword: lactic acid bacteria(LAB)

Search Result 520, Processing Time 0.025 seconds

Physicochemical components and antioxidant activity of Sparassis crispa mixture fermented by lactic acid bacteria (유산균 발효 꽃송이버섯 혼합물의 이화학적 성분과 항산화 활성)

  • Lee, Jae-Joon;Son, Hye-Young;Choi, Young-Min;Cho, Jae-Han;Min, Jung-Kee;Oh, Hee-Kyung
    • Food Science and Preservation
    • /
    • v.23 no.3
    • /
    • pp.361-368
    • /
    • 2016
  • The objective of this study was to investigate the nutritional composition and antioxidant activity of a mixture of rice bran and bodies of Sparassis crispa fermented with lactic acid bacteria (LAB). LAB-fermented S. crispa mixture had higher water, crude lipid and crude ash content than that of S. crispa. Insoluble dietary fiber contents of the dried powder of S. crispa and LAB-fermented S. crispa mixture were 46.13% and 33.46%, respectively. ${\beta}$-glucan was higher in dried S. crispa (38.03%) than in LAB-fermented S. crispa mixture (5.44%). Dried S. crispa contained mainly fructose and glucose instead of containing sucrose in LAB-fermented S. crispa mixture. No significant differences in the total polyphenol contents were found in between dried S. crispa and LAB-fermented S. crispa mixture. Total flavonoid content was significantly higher in LAB-fermented S. crispa mixture than in dried S. crispa. No significant differences were found in the DPPH radical scavenging activity and in the antioxidant index between dried S. crispa and LAB-fermented S. crispa mixture. Finally, ABTS radical scavenging activity of LAB-fermented S. crispa mixture was significantly higher than that of dried S. crispa. These results may provide the basic data for future studies for a better understanding of the biological activities of LAB-fermented S. crispa mixture.

Functional Properties of Filamentous Fungi Isolated from the Indonesian Fermented Dried Cassava, with Particular Application on Poultry

  • Sugiharto, Sugiharto;Yudiarti, Turrini;Isroli, Isroli
    • Mycobiology
    • /
    • v.43 no.4
    • /
    • pp.415-422
    • /
    • 2015
  • The study aimed to evaluate the probiotic properties, antioxidant activity and fermentative capacity of Acremonium charticola and Rhizopus oryzae isolated from the Indonesian fermented dried cassava, with particular application on poultry. A. charticola inhibited the growth of Escherichia coli and Aspergillus flavus. A. charticola and R. oryzae grew in potato dextrose agar (PDA) adjusted to pH 3 and 8 or in PDA supplemented with bile salt up to 0.8%. After soaking for 8 hr, the survival rate of A. charticola in the simulated gastric juice (pH 2) and bile solutions (2% bile salt) was lower than that of R. oryzae. A. charticola and R. oryzae exhibited strong antioxidant activities. Compared to unfermented cassava pulp (control), the fibre content of cassava pulp tended to be lower after fermentation with A. charticola for 14 days. The populations of A. charticola and R. oryzae were significantly higher in fermented cassava pulp than in unfermented one. Coliform was higher in cassava pulp fermented with R. oryzae or A. charticola + R. oryzae compared to control after 7 days of fermentation, however, the bacteria were not different between A. charticola-fermented cassava pulp and control. Lactic acid bacteria (LAB) were higher in A. charticola- and R. oryzae-fermented cassava pulp than those in control, however, no difference of LAB was observed between A. charticola + R. oryzae-fermented cassava pulp and control. In conclusion, A. charticola exhibited antibacterial, antifungal and antioxidant activity, gastrointestinal persistence and fermentative capacity that may be beneficial for poultry industry.

Water-soluble microencapsulation using gum Arabic and skim milk enhances viability and efficacy of Pediococcus acidilactici probiotic strains for application in broiler chickens

  • Ratchnida Kamwa;Benjamas Khurajog;Nongnuj Muangsin;Pawiya Pupa;David J Hampson;Nuvee Prapasarakul
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1440-1451
    • /
    • 2024
  • Objective: This study aimed to develop and evaluate the effectiveness of a water-soluble microencapsulation method for probiotic strains using gum Arabic (GA) and skim milk (SKM) over a three-month storage period following processing. Methods: Four strains of Pediococcus acidilactici (BYF26, BYF20, BF9, and BF14) that were typical lactic acid bacteria (LAB) isolated from the chicken gut were mixed with different ratios of GA and SKM as coating agents before spray drying at an inlet temperature 140℃. After processing, the survivability and probiotic qualities of the strains were assessed from two weeks to three months of storage at varied temperatures, and de-encapsulation was performed to confirm the soluble properties. Finally, the antibacterial activity of the probiotics was assessed under simulated gastrointestinal conditions. Results: As shown by scanning electron microscopy, spray-drying produced a spherical, white-yellow powder. The encapsulation efficacy (percent) was greatest for a coating containing a combination of 30% gum Arabic: 30% skim milk (w/v) (GA:SKM30) compared to lower concentrations of the two ingredients (p<0.05). Coating with GA:SKM30 (w/v) significantly enhanced (p<0.05) BYF26 survival under simulated gastrointestinal conditions (pH 2.5 to 3) and maintained higher survival rates compared to non-encapsulated cells under an artificial intestinal juices condition of pH 6. De-encapsulation tests indicated that the encapsulated powder dissolved in water while keeping viable cell counts within the effective range of 106 for 6 hours. In addition, following three months storage at 4℃, microencapsulation of BYF26 in GA:SKM30 maintained both the number of viable cells (p<0.05) and the preparation's antibacterial efficacy against pathogenic bacteria, specifically strains of Salmonella. Conclusion: Our prototype water-soluble probiotic microencapsulation GA:SKM30 effectively maintains LAB characteristics and survival rates, demonstrating its potential for use in preserving probiotic strains that can be used in chickens and potentially in other livestock.

Effects of Adding Glucose, Sorbic Acid and Pre-fermented Juices on the Fermentation Quality of Guineagrass (Panicum maximum Jacq.) Silages

  • Shao, Tao;Ohba, N.;Shimojo, M.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.808-813
    • /
    • 2004
  • This study was conducted to evaluate the effects of adding glucose (G), sorbic acid (S), pre-fermented juice of epiphytic lactic acid bacteria (FJLB) and their combinations on the fermentation qualities and residual mono-and di-saccharides compositions of guineagrass silage. The additives used in this experiment were 1% glucose, 0.1% sorbic acid and FJLB at a theoretical application rate of 9.0${\times}$105 CFU $g^{-1}$ on the fresh weight basis of guineagrass, respectively. There was a total of eight treatments in this experiment: (1) C (without additives), (2) FJLB, (3) S, (4) G, (5) FJLB+S, (6) FJLB+G, (7) S+G, (8) FJLB+S+G. After 30 days of storage, the silos were opened for chemical analyses. Based on the results, all additives were efficient in improving the fermentation quality of guineagrass silage. This was well indicated by significantly (p<0.05) lower pH and BA content and significantly (p<0.05) higher LA content in the treated silages except for the FJLB than in the C. However, there was only a slight increase in LA for the FJLB as compared with the C, which might be due to the low WSC content of the original guineagrass (34.4 g $kg^{-1}$). When the FJLB+S and FJLB+G were added, there were significant (p<0.05) decreases in pH and significant (p<0.05) increases in LA as compared with the FJLB alone. This indicated that the G, S and FJLB were of synergestic effects on the silage fermentation quality. The G combination treatments including the G alone showed large improvements in the fermentation quality as compared with the treatments without the G. This suggested that adding fermentable substrates (G) to plant materials such as guineagrass, which contain low WSC, intermediate population of epiphytic LAB, CP and DM content, is more important and efficient for improving the fermentation quality of silages than adding a number of species of domestic LAB (FJLB) and aerobic bacteria inhibitor (S).

Effect of Paecilomyces japonica on the Microbiological Quality and Shelf-life of Jeungpyun (눈꽃동충하초(Paecilomyces japonica)를 첨가한 증편의 미생물학적 품질특성 및 저장성)

  • Park Chan-Sung;Choi Mi-Ae;Park Geum-Soon
    • Korean journal of food and cookery science
    • /
    • v.20 no.6 s.84
    • /
    • pp.561-567
    • /
    • 2004
  • The purpose of this study was to investigate the effect of Paecilomyces japonica mycelia(PJM) on pH, titrable acidity and microbiological qualify of Jeungpyun(fermented rice cake). Jeungpyun prepared with $0\~\%$ of PJM stored at $5^{\circ}C\;and\;20^{\circ}C$ for 4 weeks and 7 days respectively. Before fermentation of Jeungpyun dough, viable cells of total bacterial counts(TBC), yeasts and lactic acid bacteria(LAB) were $6.0\~9.8\times10^6,\;5.3\~9.0\times10^6,\;5.4\~8.5\times10^6\;CFU/g$, respectively. During the fermentation of dough, viable cells of TBC, yeasts and LAB increased $0.3\~0.4$ log cycle and pH was decreased whereas acidity increased as the progress of fermentation. Total viable cells in Jeungpyun before storage were $5.0\times10^1\;CFU/g$. During storage of Jeungpyun, TBC, yeasts and LAB of control group increased 2.6, 2.4, 2.1 log cycle at $5^{\circ}C$ and 4.8, 4.6, 4.5 log cycle at $50^{\circ}C$, respectively, when reached at maximum level. Major microflora of Jeungpyun was composed of yeasts and LAB during fermentation of dough and storage at $5^{\circ}C\;and\;20^{\circ}C$. Addition of PJM, inhibited the growth of microorganisms, the changes of PH and titrable acidity of Jeungpyun during storage at both of $5^{\circ}C\;and\;20^{\circ}C$. From these results, the addition of PJM extended the shelf-life of Jeungpyun during storage at $5^{\circ}C\;and\;20^{\circ}C$.

Immunostimulatory effects of dairy probiotic strains Bifidobacterium animalis ssp. lactis HY8002 and Lactobacillus plantarum HY7717

  • Ju-Yeon, Kim;Joo Yun, Kim;Hyeonji, Kim;Eun Chae, Moon;Keon, Heo;Jae-Jung, Shim;Jung-Lyoul, Lee
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1117-1131
    • /
    • 2022
  • Previous studies reported that Bifidobacterium animalis ssp. lactis HY8002 (HY8002) improved intestinal integrity and had immunomodulatory effects. Lactobacillus plantarum HY7717 (HY7717) was screened in vitro from among 21 other lactic acid bacteria (LAB) and demonstrated nitric oxide (NO) production. The aims of this study were to investigate the individual and combined ex vivo and in vivo effects of LAB strains HY8002 and HY7717 at immunostimulating mice that have been challenged with an immunosuppressant drug. The combination of HY8002 and HY7717 increased the secretion of cytokines such as interferon (IFN)-γ, interleukin (IL)-12, and tumor necrosis factor (TNF)-α in splenocytes. In a cyclophosphamide (CTX)-induced immunosuppression model, administration of the foregoing LAB combination improved the splenic and hematological indices, activated natural killer (NK) cells, and up-regulated plasma immunoglobulins and cytokines. Moreover, this combination treatment increased Toll-like receptor 2 (TLR2) expression. The ability of the combination treatment to upregulate IFN-γ and TNF-α in the splenocytes was inhibited by anti-TLR2 antibody. Hence, the immune responses stimulated by the combination of HY8002 and HY7717 are associated with TLR2 activation. The preceding findings suggest that the combination of the HY8002 and HY7717 LAB strains could prove to be a beneficial and efficacious immunostimulant probiotic supplement. The combination of the two probiotic strains will be applied on the dairy foods including yogurt and cheese.

Preparation and Quality Characteristics of the Fermentation product of Ginseng by Lactic Acid Bacteria (FGL) (유산균을 이용한 발효인삼 제조 및 품질 특성)

  • Park, Soo-Jin;Kim, Dong-Hyun;Paek, Nam-Soo;Kim, Sung-Soo
    • Journal of Ginseng Research
    • /
    • v.30 no.2
    • /
    • pp.88-94
    • /
    • 2006
  • Ginseng as a raw material for production of probiotic ginseng product by lactic acid bacteria (LAB) was evaluated in this study. Either white ginseng (WG) or red ginseng (RG) (1% or 5%, w/v) were directly inoculated with a 24 hold seed culture of twenty seven substrains of four different LAB ($1.0{\times}10^6CFU/ml$); Lactobacillus spp., Streptococcus/Enterococcus spp., Leuconostoc/Lactococcus spp. and Bifidobacterium spp., and incubated at $37^{\circ}C$ for 24 or 48 h. Among 27 kinds of LAB, seven substrains of Lactobacillus (MG208, MG311, MG315, MG501, MG501C, MG505, MG590) and one Bifidobacterium (MG723) were selected based on their dose dependent stimulation of the growth of LAB in the presence of ginseng and changes in pH, acidity and viable cell counts during fermentation were examined. Lactobacillus MG208 specifically was found to show the best growth on 5% RG and reached nearly $14.0{\times}10^8CFU/ml$ after 48 h of fermentation and produced the titratable acidity as $0.84{\pm}0.02%$, whereas the pH was significantly lowered from $6.80{\pm}0.01\;to\;3.42{\pm}0.02$. These results indicated that ginseng can be an appropriate material to prepare the fermentation product by several strains of LAB. Therefore we should further check whether probiotic ginseng product may have synergistic health benefits of both probiotics and ginseng to serve for vegetarians and lactose-allergic consumers.

Microbe and Quality Changes of Ready-to-Eat Lettuce during Storage at Different Temperatures (신선편이 양상추의 온도별 저장 중 미생물과 품질변화)

  • Cho, Sun-Kyung;Kwon, Hye-Soon;Park, Jong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.12
    • /
    • pp.1867-1872
    • /
    • 2010
  • Microbe and quality changes of vacuum-packaged ready-to-eat lettuce were analyzed. While the vacuumpackaged lettuce after chlorine sanitizer were stored at $5^{\circ}C$, $15^{\circ}C$, and $25^{\circ}C$ for 7 days, viable numbers of total aerobic bacteria (TAB), coliform, E. coli, food-borne pathogens and lactic acids bacteria (LAB) were counted with gas production and sensory evaluation. Before the storage, only TAB of 2 log CFU/g and coliform of 1 log CFU/g were detected and LAB was not detected. TAB, coliform and LAB increased by 1 log CFU/g at $5^{\circ}C$ for 7 days without any detection of the pathogens. Sensory evaluations for off-flavour and crispness dropped to half the best value at 5 day storage. TAB and coliform increased by 3 log CFU/g and 2 log CFU/g, respectively, but LAB grew very actively by 4 log CFU/g under anaerobic environment and only B. cereus were detected after enrichment of the lettuce at $15^{\circ}C$ for 3 days. The evaluations for off-flavour and crispness were half the best value for 3 days. However, TAB and coliform increased by 3 log CFU/g, 1 log CFU/g, and 4 log CFU/g, respectively only at 1 day storage under $25^{\circ}C$. Also B. cereus were detected after enrichment and the sensory evaluation were half the best value within 1 day storage. Therefore, preservation at the lowest temperature possible is required for growth inhibition of the bacteria contaminated in the lettuce. Interestingly, LAB among them grew most actively under the anaerobic condition and the adulteration of lettuce might be closely related with the growth of LAB.

Effect of Lactic Acid Bacteria and Formic Acid on the Silage Quality of Whole Crop Rice at Different Maturity (유산균 및 개미산 첨가가 수확시기별 벼 사일리지의 발효 품질 및 사료성분에 미치는 영향)

  • 김병완;김곤식;성경일
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.1
    • /
    • pp.61-70
    • /
    • 2004
  • Silage additives are needed to increase the quality of whole crop rice silage which seldom produce without the additives due to both high pH and butyric acid concentrations. Little information, however, is available about the silage fermentation of whole crop rice added with silage additives in Korea. This study was conducted to determine the optimum levels of silage additives by evaluating the effects of latic acid bacteria (LAB) and formic acid concentrations on the silage quality of whole crop rice harvested at different mature stages. Field study was established early in May until October 7th on a rice field at Yupori, Sinbuk-yeup, Chunchon, Kangwon-Do. "Ilpum" mutant rice was harvested at six different mature stages; booting stage (17 Aug.), milk-ripe stage (27 Aug.), dough stage (7 Sep.), yellow ripe stage (17 Sep.), dead ripe stage (27 Sep.) and full ripe stage (7 Oct.). Each sample was ensiled in three different ways; with 1) LAB (0.05, 0.1 and 0.2% of sample wt), 2) formic acids (0.2, 0.3 and 0.4% of sample wt.) and 3) no additive. The additive levels did not affect dry matter content, crude protein, fiber and total digestable neutriant concentrations at all stages. Addition of additives significantly decreased the silage pH and butyric acid concentrations which tended to be more decreased with higher levels of additives. Latic acid concentrations were higher with the use of additives, especially with LAB. The lower concentrations of ammonia-N were observed in additive treatments at all stages, but the concentrations of ammonia-N did not differ according to the additve levels after yellow ripe stage (0.69, 0.60 and 0.71% of DM in 0.05, 01 and 0.2% of LAB, respectively; 0.64 0.59 and 0.75% of DM in 0.2, 0.3 and 0.4% of formic acid, respectively). These results indicate that the optimum addition levels of LAB and formic acid are 0.5∼0.1% and 0.2∼0.3%, respectively, on which the high quality of rice whole crop silage was produced. produced.

Optimization of γ-Aminobutyric Acid Production by Enterococcus faecium JK29 Isolated from a Traditional Fermented Foods (전통발효식품 유래 Enterococcus faecium JK29에 의한 γ-aminobutyric acid의 생산 최적화)

  • Lim, Hee Seon;Cha, In-Tae;Lee, Hyunjin;Seo, Myung-Ji
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.26-33
    • /
    • 2016
  • Dominant lactic acid bacteria (LAB) strains were isolated from traditional fermented foods to obtain rare ${\gamma}$-aminobutyric acid (GABA)-producing LAB. Out of 147 isolates, 23 strains that could produce GABA with 1% (w/v) L-monosodium glutamate (MSG) were first isolated. After further screening of these rare GABA-producing LAB by analysis of the glutamate decarboxylase and 16S rRNA gene sequences, Enterococcus faecium JK29 was isolated, and 1.56 mM of GABA was produced after 48 h cultivation in basic de Man, Rogosa, and Sharpe (MRS) medium. To enhance GABA production by E. faecium JK29, the culture conditions were optimized. When E. faecium JK29 was cultivated in optimized MRS medium containing 0.5% (w/v) sucrose and 2% (w/v) yeast extract with 0.5% (w/v) MSG, GABA production reached 14.86 mM after 48 h cultivation at initial conditions of pH 7.5 and $30^{\circ}C$.