Browse > Article
http://dx.doi.org/10.5187/jast.2022.e84

Immunostimulatory effects of dairy probiotic strains Bifidobacterium animalis ssp. lactis HY8002 and Lactobacillus plantarum HY7717  

Ju-Yeon, Kim (R&BD Center, hy Co., Ltd.)
Joo Yun, Kim (R&BD Center, hy Co., Ltd.)
Hyeonji, Kim (R&BD Center, hy Co., Ltd.)
Eun Chae, Moon (R&BD Center, hy Co., Ltd.)
Keon, Heo (R&BD Center, hy Co., Ltd.)
Jae-Jung, Shim (R&BD Center, hy Co., Ltd.)
Jung-Lyoul, Lee (R&BD Center, hy Co., Ltd.)
Publication Information
Journal of Animal Science and Technology / v.64, no.6, 2022 , pp. 1117-1131 More about this Journal
Abstract
Previous studies reported that Bifidobacterium animalis ssp. lactis HY8002 (HY8002) improved intestinal integrity and had immunomodulatory effects. Lactobacillus plantarum HY7717 (HY7717) was screened in vitro from among 21 other lactic acid bacteria (LAB) and demonstrated nitric oxide (NO) production. The aims of this study were to investigate the individual and combined ex vivo and in vivo effects of LAB strains HY8002 and HY7717 at immunostimulating mice that have been challenged with an immunosuppressant drug. The combination of HY8002 and HY7717 increased the secretion of cytokines such as interferon (IFN)-γ, interleukin (IL)-12, and tumor necrosis factor (TNF)-α in splenocytes. In a cyclophosphamide (CTX)-induced immunosuppression model, administration of the foregoing LAB combination improved the splenic and hematological indices, activated natural killer (NK) cells, and up-regulated plasma immunoglobulins and cytokines. Moreover, this combination treatment increased Toll-like receptor 2 (TLR2) expression. The ability of the combination treatment to upregulate IFN-γ and TNF-α in the splenocytes was inhibited by anti-TLR2 antibody. Hence, the immune responses stimulated by the combination of HY8002 and HY7717 are associated with TLR2 activation. The preceding findings suggest that the combination of the HY8002 and HY7717 LAB strains could prove to be a beneficial and efficacious immunostimulant probiotic supplement. The combination of the two probiotic strains will be applied on the dairy foods including yogurt and cheese.
Keywords
Immune; Immunostimulation; Cytokines; Toll-like receptor; Cyclophosphamide;
Citations & Related Records
Times Cited By KSCI : 14  (Citation Analysis)
연도 인용수 순위
1 Peng X, Zhang R, Duan G, Wang C, Sun N, Zhang L, et al. Production and delivery of Helicobacter pylori NapA in Lactococcus lactis and its protective efficacy and immune modulatory activity. Sci Rep. 2018;8:6435. https://doi.org/10.1038/s41598-018-24879-x   DOI
2 Jung IS, Jeon MG, Oh DS, Jung YJ, Kim HS, Bae D, et al. Micronized, heat-treated Lactobacillus plantarum LM1004 alleviates cyclophosphamide-induced immune suppression. J Med Food. 2019;22:896-906. https://doi.org/10.1089/jmf.2018.4378   DOI
3 Wells JM. Immunomodulatory mechanisms of lactobacilli. Microb Cell Fact. 2011;10:S17. https://doi.org/10.1186/1475-2859-10-S1-S17   DOI
4 Park IJ, Lee JH, Kye BH, Oh HK, Cho YB, Kim YT, et al. Effects of probiotics on the symptoms and surgical outcomes after anterior resection of colon cancer (POSTCARE): a randomized, double-blind, placebo-controlled trial. J Clin Med. 2020;9:2181. https://doi.org/10.3390/jcm9072181   DOI
5 Mo SJ, Nam B, Bae CH, Park SD, Shim JJ, Lee JL. Characterization of novel Lactobacillus paracasei HY7017 capable of improving physiological properties and immune enhancing effects using red ginseng extract. Fermentation. 2021;7:238. https://doi.org/10.3390/fermentation7040238   DOI
6 Whalley K. Brain-spleen link tunes immunity. Nat Rev Immunol. 2020;20:406-7. https://doi.org/10.1038/s41577-020-0347-9   DOI
7 Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45:27-37. https://doi.org/10.1097/AIA.0b013e318034194e   DOI
8 Crimeen-Irwin B, Scalzo K, Gloster S, Mottram PL, Plebanski M. Failure of immune homeostasis - the consequences of under and over reactivity. Curr Drug Targets Immune Endocr Metabol Disord. 2005;5:413-23. https://doi.org/10.2174/156800805774912980   DOI
9 Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol. 1995;13:251-76. https://doi.org/10.1146/annurev.iy.13.040195.001343   DOI
10 Chu WM. Tumor necrosis factor. Cancer Lett. 2013;328:222-5. https://doi.org/10.1016/j.canlet.2012.10.014   DOI
11 Eghrari-Sabet JS, Hartley AH. Sweet's syndrome: an immunologically mediated skin disease? Ann Allergy. 1994;72:125-8.
12 Jung JY, Shin JS, Lee SG, Rhee YK, Cho CW, Hong HD, et al. Lactobacillus sakei K040706 evokes immunostimulatory effects on macrophages through TLR 2-mediated activation. Int Immunopharmacol. 2015;28:88-96. https://doi.org/10.1016/j.intimp.2015.05.037   DOI
13 Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44-9. https://doi.org/10.1126/science.1198687   DOI
14 Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491. https://doi.org/10.3389/fimmu.2014.00491   DOI
15 Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev. 1991;43:109-42.
16 Ghosh S, May MJ, Kopp EB. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16:225-60. https://doi.org/10.1146/annurev.immunol.16.1.225   DOI
17 Popova M, Molimard P, Courau S, Crociani J, Dufour C, Le Vacon F, et al. Beneficial effects of probiotics in upper respiratory tract infections and their mechanical actions to antagonize pathogens. J Appl Microbiol. 2012;113:1305-18. https://doi.org/10.1111/j.1365-2672.2012.05394.x   DOI
18 Mei Y, Chen H, Zhang J, Zhang X, Liang Y. Protective effect of chitooligosaccharides against cyclophosphamide-induced immunosuppression in mice. Int J Biol Macromol. 2013;62:330-5. https://doi.org/10.1016/j.ijbiomac.2013.09.038   DOI
19 Seminario-Amez M, Lopez-Lopez J, Estrugo-Devesa A, Ayuso-Montero R, Jane -Salas E. Probiotics and oral health: a systematic review. Med Oral Patol Oral Cir Bucal. 2017;22:e282-8. https://doi.org/10.4317/medoral.21494   DOI
20 Singh K, Rao A. Probiotics: a potential immunomodulator in COVID-19 infection management. Nutr Res. 2021;87:1-12. https://doi.org/10.1016/j.nutres.2020.12.014   DOI
21 Azad MAK, Sarker M, Wan D. Immunomodulatory effects of probiotics on cytokine profiles. BioMed Res Int. 2018;2018:8063647. https://doi.org/10.1155/2018/8063647   DOI
22 Nova E, Warnberg J, Gomez-Martinez S, Diaz LE, Romeo J, Marcos A. Immunomodulatory effects of probiotics in different stages of life. Br J Nutr. 2007;98:S90-5. https://doi.org/10.1017/S0007114507832983   DOI
23 Neish AS. The gut microflora and intestinal epithelial cells: a continuing dialogue. Microbes Infect. 2002;4:309-17. https://doi.org/10.1016/S1286-4579(02)01543-5   DOI
24 Ren C, Cheng L, Sun Y, Zhang Q, de Haan BJ, Zhang H, et al. Lactic acid bacteria secrete toll like receptor 2 stimulating and macrophage immunomodulating bioactive factors. J Funct Foods. 2020;66:103783. https://doi.org/10.1016/j.jff.2020.103783   DOI
25 Fu Y, Wang T, Xiu L, Shi X, Bian Z, Zhang Y, et al. Levamisole promotes murine bone marrow derived dendritic cell activation and drives Th1 immune response in vitro and in vivo. Int Immunopharmacol. 2016;31:57-65. https://doi.org/10.1016/j.intimp.2015.12.015   DOI
26 Lebeer S, Vanderleyden J, De Keersmaecker SCJ. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol. 2010;8:171-84. https://doi.org/10.1038/nrmicro2297   DOI
27 Ren C, Zhang Q, de Haan BJ, Zhang H, Faas MM, de Vos P. Identification of TLR2/TLR6 signalling lactic acid bacteria for supporting immune regulation. Sci Rep. 2016;6:34561. https://doi.org/10.1038/srep34561   DOI
28 Xiao J, Liang Z, Liu A, Chen D, Xiao Y, Liu J, et al. Immunosuppressive activity of polysaccharides from Cordyceps gunnii mycelia in mice in vivo/vitro. J Food Agric Environ. 2004;2:69-73.
29 Yin J, Jin H, Yang F, Ding Z, Huang C, Zhu Q, et al. Synergistic effects of adjuvants interferon-γ and levamisole on DNA vaccination against infection with Newcastle disease virus. Viral Immunol. 2007;20:288-99. https://doi.org/10.1089/vim.2006.0108   DOI
30 Park HE, Lee WK. Immune enhancing effects of Weissella cibaria JW15 on BALB/c mice immunosuppressed by cyclophosphamide. J Funct Foods. 2018;49:518-25. https://doi.org/10.1016/j.jff.2018.09.003   DOI
31 Cheng VCC, Hung IFN, Wu AKL, Tang BSF, Chu CM, Yuen KY. Lymphocyte surge as a marker for immunorestitution disease due to Pneumocystis jiroveci pneumonia in HIVnegative immunosuppressed hosts. Eur J Clin Microbiol Infect Dis. 2004;23:512-4. https://doi.org/10.1007/s10096-004-1140-6   DOI
32 Karsten E, Herbert BR. The emerging role of red blood cells in cytokine signalling and modulating immune cells. Blood Rev. 2020;41:100644. https://doi.org/10.1016/j.blre.2019.100644   DOI
33 Oberg HH, Juricke M, Kabelitz D, Wesch D. Regulation of T cell activation by TLR ligands. Eur J Cell Biol. 2011;90:582-92. https://doi.org/10.1016/j.ejcb.2010.11.012   DOI
34 Minton K. Red blood cells join the ranks as immune sentinels. Nat Rev Immunol. 2021;21:760-1. https://doi.org/10.1038/s41577-021-00648-2   DOI
35 Abel AM, Yang C, Thakar MS, Malarkannan S. Natural killer cells: development, maturation, and clinical utilization. Front Immunol. 2018;9:1869. https://doi.org/10.3389/fimmu.2018.01869   DOI
36 Meng M, Wang H, Li Z, Guo M, Hou L. Protective effects of polysaccharides from Cordyceps gunnii mycelia against cyclophosphamide-induced immunosuppression to TLR4/TRAF6/ NF-κB signalling in BALB/c mice. Food Funct. 2019;10:3262-71. https://doi.org/10.1039/C9FO00482C   DOI
37 Wang H, Wang M, Chen J, Tang Y, Dou J, Yu J, et al. A polysaccharide from Strongylocentrotus nudus eggs protects against myelosuppression and immunosuppression in cyclophosphamide-treated mice. Int Immunopharmacol. 2011;11:1946-53. https://doi.org/10.1016/j.intimp.2011.06.006   DOI
38 Al-Nasser IA. In vivo prevention of cyclophosphamide-induced Ca2+ dependent damage of rat heart and liver mitochondria by cyclosporin A. Comp Biochem Physiol A Mol Integr Physiol. 1998;121:209-14. https://doi.org/10.1016/S1095-6433(98)10135-6   DOI
39 Houssiau F. Thirty years of cyclophosphamide: assessing the evidence. Lupus. 2007;16:212-6. https://doi.org/10.1177/0961203306075613   DOI
40 Wohlgemuth S, Loh G, Blaut M. Recent developments and perspectives in the investigation of probiotic effects. Int J Med Microbiol. 2010;300:3-10. https://doi.org/10.1016/j.ijmm.2009.08.003   DOI
41 Lee H, Ahn YT, Park SH, Park DY, Jin YW, Kim CS, et al. Lactobacillus plantarum HY7712 protects against the impairment of NK-cell activity caused by whole-body γ-irradiation in mice. J Microbiol Biotechnol. 2014;24:127-31. https://doi.org/10.4014/jmb.1307.07001   DOI
42 Kim JY, Bang SJ, Kim JY, Choi EJ, Heo K, Shim JJ, et al. The probiotic strain bifidobacterium animalis ssp. lactis HY8002 potentially improves the mucosal integrity of an altered intestinal microbial environment. Front Microbiol. 2022;13:817591. https://doi.org/10.3389/fmicb.2022.817591   DOI
43 Nam W, Kim H, Bae C, Kim J, Nam B, Lee Y, et al. Lactobacillus HY2782 and bifidobacterium HY8002 decrease airway hyperresponsiveness induced by chronic PM2.5 inhalation in mice. J Med Food. 2020;23:575-83. https://doi.org/10.1089/jmf.2019.4604   DOI
44 Jang SE, Joh EH, Lee HY, Ahn YT, Lee JH, Huh CS, et al. Lactobacillus plantarum HY7712 ameliorates cyclophosphamide-induced immunosuppression in mice. J Microbiol Biotechnol. 2013;23:414-21. https://doi.org/10.4014/jmb.1210.10010   DOI
45 Meng Y, Li B, Jin D, Zhan M, Lu J, Huo G. Immunomodulatory activity of Lactobacillus plantarum KLDS1.0318 in cyclophosphamide-treated mice. Food Nutr Res. 2018;62. https://doi.org/10.29219/fnr.v62.1296   DOI
46 Hua Z, Hou B. TLR signaling in B-cell development and activation. Cell Mol Immunol. 2013;10:103-6. https://doi.org/10.1038/cmi.2012.61   DOI
47 Owens JA, Saeedi BJ, Naudin CR, Hunter-Chang S, Barbian ME, Eboka RU, et al. Lactobacillus rhamnosus GG orchestrates an antitumor immune response. Cell Mol Gastroenterol Hepatol. 2021;12:1311-27. https://doi.org/10.1016/j.jcmgh.2021.06.001   DOI
48 Campbell JM, Crenshaw JD, Polo J. The biological stress of early weaned piglets. J Anim Sci Biotechnol. 2013;4:19. https://doi.org/10.1186/2049-1891-4-19   DOI
49 Castillo NA, Perdigon G, de Moreno de LeBlanc A. Oral administration of a probiotic Lactobacillus modulates cytokine production and TLR expression improving the immune response against Salmonella enterica serovar Typhimurium infection in mice. BMC Microbiol. 2011;11:177. https://doi.org/10.1186/1471-2180-11-177   DOI
50 Cortes-Perez NG, de Moreno de LeBlanc A, Gomez-Gutierrez JG, LeBlanc JG, Bermudez-Humaran LG. Probiotics and trained immunity. Biomolecules. 2021;11:1402. https://doi.org/10.3390/biom11101402   DOI
51 Wang J, Zhang W, Wang S, Liu H, Zhang D, Wang Y, et al. Swine-derived probiotic Lactobacillus plantarum modulates porcine intestinal endogenous host defense peptide synthesis through TLR2/MAPK/AP-1 signaling pathway. Front Immunol. 2019;10:2691. https://doi.org/10.3389/fimmu.2019.02691   DOI
52 Shang J, Wan F, Zhao L, Meng X, Li B. Potential immunomodulatory activity of a selected strain Bifidobacterium bifidum H3-R2 as evidenced in vitro and in immunosuppressed mice. Front Microbiol. 2020;11:2089. https://doi.org/10.3389/fmicb.2020.02089   DOI
53 Claes IJ, Segers ME, Verhoeven TLA, Dusselier M, Sels BF, De Keersmaecker SCJ, et al. Lipoteichoic acid is an important microbe-associated molecular pattern of Lactobacillus rhamnosus GG. Microb Cell Fact. 2012;11:161. https://doi.org/10.1186/1475-2859-11-161   DOI
54 Sim I, Park KT, Kwon G, Koh JH, Lim YH. Probiotic potential of Enterococcus faecium isolated from chicken cecum with immunomodulating activity and promoting longevity in Caenorhabditis elegans. J Microbiol Biotechnol. 2018;28:883-92. https://doi.org/10.4014/jmb.1802.02019   DOI