Immunostimulatory effects of dairy probiotic strains Bifidobacterium animalis ssp. lactis HY8002 and Lactobacillus plantarum HY7717 |
Ju-Yeon, Kim
(R&BD Center, hy Co., Ltd.)
Joo Yun, Kim (R&BD Center, hy Co., Ltd.) Hyeonji, Kim (R&BD Center, hy Co., Ltd.) Eun Chae, Moon (R&BD Center, hy Co., Ltd.) Keon, Heo (R&BD Center, hy Co., Ltd.) Jae-Jung, Shim (R&BD Center, hy Co., Ltd.) Jung-Lyoul, Lee (R&BD Center, hy Co., Ltd.) |
1 | Peng X, Zhang R, Duan G, Wang C, Sun N, Zhang L, et al. Production and delivery of Helicobacter pylori NapA in Lactococcus lactis and its protective efficacy and immune modulatory activity. Sci Rep. 2018;8:6435. https://doi.org/10.1038/s41598-018-24879-x DOI |
2 | Jung IS, Jeon MG, Oh DS, Jung YJ, Kim HS, Bae D, et al. Micronized, heat-treated Lactobacillus plantarum LM1004 alleviates cyclophosphamide-induced immune suppression. J Med Food. 2019;22:896-906. https://doi.org/10.1089/jmf.2018.4378 DOI |
3 | Wells JM. Immunomodulatory mechanisms of lactobacilli. Microb Cell Fact. 2011;10:S17. https://doi.org/10.1186/1475-2859-10-S1-S17 DOI |
4 | Park IJ, Lee JH, Kye BH, Oh HK, Cho YB, Kim YT, et al. Effects of probiotics on the symptoms and surgical outcomes after anterior resection of colon cancer (POSTCARE): a randomized, double-blind, placebo-controlled trial. J Clin Med. 2020;9:2181. https://doi.org/10.3390/jcm9072181 DOI |
5 | Mo SJ, Nam B, Bae CH, Park SD, Shim JJ, Lee JL. Characterization of novel Lactobacillus paracasei HY7017 capable of improving physiological properties and immune enhancing effects using red ginseng extract. Fermentation. 2021;7:238. https://doi.org/10.3390/fermentation7040238 DOI |
6 | Whalley K. Brain-spleen link tunes immunity. Nat Rev Immunol. 2020;20:406-7. https://doi.org/10.1038/s41577-020-0347-9 DOI |
7 | Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45:27-37. https://doi.org/10.1097/AIA.0b013e318034194e DOI |
8 | Crimeen-Irwin B, Scalzo K, Gloster S, Mottram PL, Plebanski M. Failure of immune homeostasis - the consequences of under and over reactivity. Curr Drug Targets Immune Endocr Metabol Disord. 2005;5:413-23. https://doi.org/10.2174/156800805774912980 DOI |
9 | Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol. 1995;13:251-76. https://doi.org/10.1146/annurev.iy.13.040195.001343 DOI |
10 | Chu WM. Tumor necrosis factor. Cancer Lett. 2013;328:222-5. https://doi.org/10.1016/j.canlet.2012.10.014 DOI |
11 | Eghrari-Sabet JS, Hartley AH. Sweet's syndrome: an immunologically mediated skin disease? Ann Allergy. 1994;72:125-8. |
12 | Jung JY, Shin JS, Lee SG, Rhee YK, Cho CW, Hong HD, et al. Lactobacillus sakei K040706 evokes immunostimulatory effects on macrophages through TLR 2-mediated activation. Int Immunopharmacol. 2015;28:88-96. https://doi.org/10.1016/j.intimp.2015.05.037 DOI |
13 | Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44-9. https://doi.org/10.1126/science.1198687 DOI |
14 | Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491. https://doi.org/10.3389/fimmu.2014.00491 DOI |
15 | Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev. 1991;43:109-42. |
16 | Ghosh S, May MJ, Kopp EB. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16:225-60. https://doi.org/10.1146/annurev.immunol.16.1.225 DOI |
17 | Popova M, Molimard P, Courau S, Crociani J, Dufour C, Le Vacon F, et al. Beneficial effects of probiotics in upper respiratory tract infections and their mechanical actions to antagonize pathogens. J Appl Microbiol. 2012;113:1305-18. https://doi.org/10.1111/j.1365-2672.2012.05394.x DOI |
18 | Mei Y, Chen H, Zhang J, Zhang X, Liang Y. Protective effect of chitooligosaccharides against cyclophosphamide-induced immunosuppression in mice. Int J Biol Macromol. 2013;62:330-5. https://doi.org/10.1016/j.ijbiomac.2013.09.038 DOI |
19 | Seminario-Amez M, Lopez-Lopez J, Estrugo-Devesa A, Ayuso-Montero R, Jane -Salas E. Probiotics and oral health: a systematic review. Med Oral Patol Oral Cir Bucal. 2017;22:e282-8. https://doi.org/10.4317/medoral.21494 DOI |
20 | Singh K, Rao A. Probiotics: a potential immunomodulator in COVID-19 infection management. Nutr Res. 2021;87:1-12. https://doi.org/10.1016/j.nutres.2020.12.014 DOI |
21 | Azad MAK, Sarker M, Wan D. Immunomodulatory effects of probiotics on cytokine profiles. BioMed Res Int. 2018;2018:8063647. https://doi.org/10.1155/2018/8063647 DOI |
22 | Nova E, Warnberg J, Gomez-Martinez S, Diaz LE, Romeo J, Marcos A. Immunomodulatory effects of probiotics in different stages of life. Br J Nutr. 2007;98:S90-5. https://doi.org/10.1017/S0007114507832983 DOI |
23 | Neish AS. The gut microflora and intestinal epithelial cells: a continuing dialogue. Microbes Infect. 2002;4:309-17. https://doi.org/10.1016/S1286-4579(02)01543-5 DOI |
24 | Ren C, Cheng L, Sun Y, Zhang Q, de Haan BJ, Zhang H, et al. Lactic acid bacteria secrete toll like receptor 2 stimulating and macrophage immunomodulating bioactive factors. J Funct Foods. 2020;66:103783. https://doi.org/10.1016/j.jff.2020.103783 DOI |
25 | Fu Y, Wang T, Xiu L, Shi X, Bian Z, Zhang Y, et al. Levamisole promotes murine bone marrow derived dendritic cell activation and drives Th1 immune response in vitro and in vivo. Int Immunopharmacol. 2016;31:57-65. https://doi.org/10.1016/j.intimp.2015.12.015 DOI |
26 | Lebeer S, Vanderleyden J, De Keersmaecker SCJ. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol. 2010;8:171-84. https://doi.org/10.1038/nrmicro2297 DOI |
27 | Ren C, Zhang Q, de Haan BJ, Zhang H, Faas MM, de Vos P. Identification of TLR2/TLR6 signalling lactic acid bacteria for supporting immune regulation. Sci Rep. 2016;6:34561. https://doi.org/10.1038/srep34561 DOI |
28 | Xiao J, Liang Z, Liu A, Chen D, Xiao Y, Liu J, et al. Immunosuppressive activity of polysaccharides from Cordyceps gunnii mycelia in mice in vivo/vitro. J Food Agric Environ. 2004;2:69-73. |
29 | Yin J, Jin H, Yang F, Ding Z, Huang C, Zhu Q, et al. Synergistic effects of adjuvants interferon-γ and levamisole on DNA vaccination against infection with Newcastle disease virus. Viral Immunol. 2007;20:288-99. https://doi.org/10.1089/vim.2006.0108 DOI |
30 | Park HE, Lee WK. Immune enhancing effects of Weissella cibaria JW15 on BALB/c mice immunosuppressed by cyclophosphamide. J Funct Foods. 2018;49:518-25. https://doi.org/10.1016/j.jff.2018.09.003 DOI |
31 | Cheng VCC, Hung IFN, Wu AKL, Tang BSF, Chu CM, Yuen KY. Lymphocyte surge as a marker for immunorestitution disease due to Pneumocystis jiroveci pneumonia in HIVnegative immunosuppressed hosts. Eur J Clin Microbiol Infect Dis. 2004;23:512-4. https://doi.org/10.1007/s10096-004-1140-6 DOI |
32 | Karsten E, Herbert BR. The emerging role of red blood cells in cytokine signalling and modulating immune cells. Blood Rev. 2020;41:100644. https://doi.org/10.1016/j.blre.2019.100644 DOI |
33 | Oberg HH, Juricke M, Kabelitz D, Wesch D. Regulation of T cell activation by TLR ligands. Eur J Cell Biol. 2011;90:582-92. https://doi.org/10.1016/j.ejcb.2010.11.012 DOI |
34 | Minton K. Red blood cells join the ranks as immune sentinels. Nat Rev Immunol. 2021;21:760-1. https://doi.org/10.1038/s41577-021-00648-2 DOI |
35 | Abel AM, Yang C, Thakar MS, Malarkannan S. Natural killer cells: development, maturation, and clinical utilization. Front Immunol. 2018;9:1869. https://doi.org/10.3389/fimmu.2018.01869 DOI |
36 | Meng M, Wang H, Li Z, Guo M, Hou L. Protective effects of polysaccharides from Cordyceps gunnii mycelia against cyclophosphamide-induced immunosuppression to TLR4/TRAF6/ NF-κB signalling in BALB/c mice. Food Funct. 2019;10:3262-71. https://doi.org/10.1039/C9FO00482C DOI |
37 | Wang H, Wang M, Chen J, Tang Y, Dou J, Yu J, et al. A polysaccharide from Strongylocentrotus nudus eggs protects against myelosuppression and immunosuppression in cyclophosphamide-treated mice. Int Immunopharmacol. 2011;11:1946-53. https://doi.org/10.1016/j.intimp.2011.06.006 DOI |
38 | Al-Nasser IA. In vivo prevention of cyclophosphamide-induced Ca2+ dependent damage of rat heart and liver mitochondria by cyclosporin A. Comp Biochem Physiol A Mol Integr Physiol. 1998;121:209-14. https://doi.org/10.1016/S1095-6433(98)10135-6 DOI |
39 | Houssiau F. Thirty years of cyclophosphamide: assessing the evidence. Lupus. 2007;16:212-6. https://doi.org/10.1177/0961203306075613 DOI |
40 | Wohlgemuth S, Loh G, Blaut M. Recent developments and perspectives in the investigation of probiotic effects. Int J Med Microbiol. 2010;300:3-10. https://doi.org/10.1016/j.ijmm.2009.08.003 DOI |
41 | Lee H, Ahn YT, Park SH, Park DY, Jin YW, Kim CS, et al. Lactobacillus plantarum HY7712 protects against the impairment of NK-cell activity caused by whole-body γ-irradiation in mice. J Microbiol Biotechnol. 2014;24:127-31. https://doi.org/10.4014/jmb.1307.07001 DOI |
42 | Kim JY, Bang SJ, Kim JY, Choi EJ, Heo K, Shim JJ, et al. The probiotic strain bifidobacterium animalis ssp. lactis HY8002 potentially improves the mucosal integrity of an altered intestinal microbial environment. Front Microbiol. 2022;13:817591. https://doi.org/10.3389/fmicb.2022.817591 DOI |
43 | Nam W, Kim H, Bae C, Kim J, Nam B, Lee Y, et al. Lactobacillus HY2782 and bifidobacterium HY8002 decrease airway hyperresponsiveness induced by chronic PM2.5 inhalation in mice. J Med Food. 2020;23:575-83. https://doi.org/10.1089/jmf.2019.4604 DOI |
44 | Jang SE, Joh EH, Lee HY, Ahn YT, Lee JH, Huh CS, et al. Lactobacillus plantarum HY7712 ameliorates cyclophosphamide-induced immunosuppression in mice. J Microbiol Biotechnol. 2013;23:414-21. https://doi.org/10.4014/jmb.1210.10010 DOI |
45 | Meng Y, Li B, Jin D, Zhan M, Lu J, Huo G. Immunomodulatory activity of Lactobacillus plantarum KLDS1.0318 in cyclophosphamide-treated mice. Food Nutr Res. 2018;62. https://doi.org/10.29219/fnr.v62.1296 DOI |
46 | Hua Z, Hou B. TLR signaling in B-cell development and activation. Cell Mol Immunol. 2013;10:103-6. https://doi.org/10.1038/cmi.2012.61 DOI |
47 | Owens JA, Saeedi BJ, Naudin CR, Hunter-Chang S, Barbian ME, Eboka RU, et al. Lactobacillus rhamnosus GG orchestrates an antitumor immune response. Cell Mol Gastroenterol Hepatol. 2021;12:1311-27. https://doi.org/10.1016/j.jcmgh.2021.06.001 DOI |
48 | Campbell JM, Crenshaw JD, Polo J. The biological stress of early weaned piglets. J Anim Sci Biotechnol. 2013;4:19. https://doi.org/10.1186/2049-1891-4-19 DOI |
49 | Castillo NA, Perdigon G, de Moreno de LeBlanc A. Oral administration of a probiotic Lactobacillus modulates cytokine production and TLR expression improving the immune response against Salmonella enterica serovar Typhimurium infection in mice. BMC Microbiol. 2011;11:177. https://doi.org/10.1186/1471-2180-11-177 DOI |
50 | Cortes-Perez NG, de Moreno de LeBlanc A, Gomez-Gutierrez JG, LeBlanc JG, Bermudez-Humaran LG. Probiotics and trained immunity. Biomolecules. 2021;11:1402. https://doi.org/10.3390/biom11101402 DOI |
51 | Wang J, Zhang W, Wang S, Liu H, Zhang D, Wang Y, et al. Swine-derived probiotic Lactobacillus plantarum modulates porcine intestinal endogenous host defense peptide synthesis through TLR2/MAPK/AP-1 signaling pathway. Front Immunol. 2019;10:2691. https://doi.org/10.3389/fimmu.2019.02691 DOI |
52 | Shang J, Wan F, Zhao L, Meng X, Li B. Potential immunomodulatory activity of a selected strain Bifidobacterium bifidum H3-R2 as evidenced in vitro and in immunosuppressed mice. Front Microbiol. 2020;11:2089. https://doi.org/10.3389/fmicb.2020.02089 DOI |
53 | Claes IJ, Segers ME, Verhoeven TLA, Dusselier M, Sels BF, De Keersmaecker SCJ, et al. Lipoteichoic acid is an important microbe-associated molecular pattern of Lactobacillus rhamnosus GG. Microb Cell Fact. 2012;11:161. https://doi.org/10.1186/1475-2859-11-161 DOI |
54 | Sim I, Park KT, Kwon G, Koh JH, Lim YH. Probiotic potential of Enterococcus faecium isolated from chicken cecum with immunomodulating activity and promoting longevity in Caenorhabditis elegans. J Microbiol Biotechnol. 2018;28:883-92. https://doi.org/10.4014/jmb.1802.02019 DOI |