• Title/Summary/Keyword: labeling algorithm

Search Result 261, Processing Time 0.024 seconds

A Study on Implementation of Image Processing System for the Defect Inspection of polyethylene (팔레트의 불량검사를 위한 영상 처리 시스템 구현)

  • Kim, Kyoung-Min;Kang, Jong-Su;Park, Joong-Jo;Song, Myeong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2738-2740
    • /
    • 2001
  • This paper describes a study on implementation of image processing systems for the defect inspection of polyethylene. In order to detect the edge, the Robert filter is used. And we use to the labeling algorithm for feature extraction. Labeling the conected regions of a image is a fundamental computation in image analysis and machine vision, with a large number of application. This algorithm is designed for the defect inspection of polyethylene.

  • PDF

Study on High Speed Routers(I)-Labeling Algorithms for STC104 (고속라우터에 대한 고찰(I)-STC104의 레이블링 알고리즘)

  • Lee, Hyo-Jong
    • The KIPS Transactions:PartA
    • /
    • v.8A no.2
    • /
    • pp.147-156
    • /
    • 2001
  • A high performance routing switch is an essential device to either the high performance parallel processing or communication networks that handle multimedia transfer systems such as VOD. The high performance routing chip called STC104 is a typical example in the technical aspect which has 32 bidirectional links of 100Mbps transfer sped. It has exploited new technologies, such as wormhole routing, interval labeling, and adaptive routing method. The high speed router has been applied into some parallel processing system as a single chip. However, its performance over the various interconnection networks with multiple routing chips has not been studied. In this paper, the strucrtures and characteristics of the STC104 have been investigated in order to evaluate the high speed router. Various topology of the STC104, such as meshes, torus, and N-cube are defined and constructed. Algorithms of packet transmission have been proposed based on the interval labeling and the group adaptive routing method implemented in the interconnected network. Multicast algorithms, which are often requited to the processor networks and broadcasting systems, modified from U-mesh and U-torus algorithms have also been proposed overcoming the problems of point-to-point communication.

  • PDF

Flow Labeling Method for Realtime Detection of Heavy Traffic Sources (대량 트래픽 전송자의 실시간 탐지를 위한 플로우 라벨링 방법)

  • Lee, KyungHee;Nyang, DaeHun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.10
    • /
    • pp.421-426
    • /
    • 2013
  • As a greater amount of traffic have been generated on the Internet, it becomes more important to know the size of each flow. Many research studies have been conducted on the traffic measurement, and mostly they have focused on how to increase the measurement accuracy with a limited amount of memory. In this paper, we propose an explicit flow labeling technique that can be used to find out the names of the top flows and to increase the counting upper bound of the existing scheme. The labeling technique is applied to CSM (Counter Sharing Method), the most recent traffic measurement algorithm, and the performance is evaluated using the CAIDA dataset.

An Improved Hybrid Approach to Parallel Connected Component Labeling using CUDA

  • Soh, Young-Sung;Ashraf, Hadi;Kim, In-Taek
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In many image processing tasks, connected component labeling (CCL) is performed to extract regions of interest. CCL was usually done in a sequential fashion when image resolution was relatively low and there are small number of input channels. As image resolution gets higher up to HD or Full HD and as the number of input channels increases, sequential CCL is too time-consuming to be used in real time applications. To cope with this situation, parallel CCL framework was introduced where multiple cores are utilized simultaneously. Several parallel CCL methods have been proposed in the literature. Among them are NSZ label equivalence (NSZ-LE) method[1], modified 8 directional label selection (M8DLS) method[2], and HYBRID1 method[3]. Soh [3] showed that HYBRID1 outperforms NSZ-LE and M8DLS, and argued that HYBRID1 is by far the best. In this paper we propose an improved hybrid parallel CCL algorithm termed as HYBRID2 that hybridizes M8DLS with label backtracking (LB) and show that it runs around 20% faster than HYBRID1 for various kinds of images.

A Study on Labeling of ECG Signal using Fuzzy Clustering (퍼지 클러스터링을 이용한 심전도 신호의 라벨링에 관한 연구)

  • Kong, I.W.;Lee, J.W.;Lee, S.H.;Choi, S.J.;Lee, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.118-121
    • /
    • 1996
  • This paper describes ECG signal labeling based on Fuzzy clustering, which is necessary at automated ECG diagnosis. The NPPA(Non parametric partitioning algorithm) compares the correlations of wave forms, which tends to recognize the same wave forms as different when the wave forms have a little morphological variation. We propose to apply Fuzzy clustering to ECG QRS Complex labeling, which prevents the errors to mistake by using If-then comparision. The process is divided into two parts. The first part is a parameters extraction process from ECG signal, which is composed of filtering, QRS detection by mapping to a phase space by time delay coordinates and generation of characteristic vectors. The second is fuzzy clustering by FCM(Fuzzy c-means), which is composed of a clustering, an assessment of cluster validity and labeling.

  • PDF

License Plate Extraction Using Gray Labeling and fuzzy Membership Function (그레이 레이블링 및 퍼지 추론 규칙을 이용한 흰색 자동차 번호판 추출 기법)

  • Kim, Do-Hyeon;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1495-1504
    • /
    • 2008
  • New license plates have been used since 2007. This paper proposes a new license plate extraction method using a gray labeling and a fuzzy reasoning method. First, the proposed method extracts the candidate plates by the gray labeling which is the enhanced version of a non-recursive flood-filling algorithm. By newly designed fuzzy inference system. fitness of each candidate plates are calculated. Finally, the area of the license plate in a image is extracted as a region of the candidate label which has the highest fitness. In the experiments, various license plate images took from indoor/outdoor parking lot, street, etc. by digital camera or cellular phone were used and the proposed extraction method was showed remarkable results of a 94 percent success.

Real-time Speed Sign Recognition Method Using Virtual Environments and Camera Images (가상환경 및 카메라 이미지를 활용한 실시간 속도 표지판 인식 방법)

  • Eunji Song;Taeyun Kim;Hyobin Kim;Kyung-Ho Kim;Sung-Ho Hwang
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.92-99
    • /
    • 2023
  • Autonomous vehicles should recognize and respond to the specified speed to drive in compliance with regulations. To recognize the specified speed, the most representative method is to read the numbers of the signs by recognizing the speed signs in the front camera image. This study proposes a method that utilizes YOLO-Labeling-Labeling-EfficientNet. The sign box is first recognized with YOLO, and the numeric digit is extracted according to the pixel value from the recognized box through two labeling stages. After that, the number of each digit is recognized using EfficientNet (CNN) learned with the virtual environment dataset produced directly. In addition, we estimated the depth of information from the height value of the recognized sign through regression analysis. We verified the proposed algorithm using the virtual racing environment and GTSRB, and proved its real-time performance and efficient recognition performance.

Selective labeling using image super resolution for improving the efficiency of object detection in low-resolution oriental paintings

  • Moon, Hyeyoung;Kim, Namgyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.21-32
    • /
    • 2022
  • Image labeling must be preceded in order to perform object detection, and this task is considered a significant burden in building a deep learning model. Tens of thousands of images need to be trained for building a deep learning model, and human labelers have many limitations in labeling these images manually. In order to overcome these difficulties, this study proposes a method to perform object detection without significant performance degradation, even though labeling some images rather than the entire image. Specifically, in this study, low-resolution oriental painting images are converted into high-quality images using a super-resolution algorithm, and the effect of SSIM and PSNR derived in this process on the mAP of object detection is analyzed. We expect that the results of this study can contribute significantly to constructing deep learning models such as image classification, object detection, and image segmentation that require efficient image labeling.

Object Recognition Using Hausdorff Distance and Image Matching Algorithm (Hausdorff Distance와 이미지정합 알고리듬을 이용한 물체인식)

  • Kim, Dong-Gi;Lee, Wan-Jae;Gang, Lee-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.841-849
    • /
    • 2001
  • The pixel information of the object was obtained sequentially and pixels were clustered to a label by the line labeling method. Feature points were determined by finding the slope for edge pixels after selecting the fixed number of edge pixels. The slope was estimated by the least square method to reduce the detection error. Once a matching point was determined by comparing the feature information of the object and the pattern, the parameters for translation, scaling and rotation were obtained by selecting the longer line of the two which passed through the matching point from left and right sides. Finally, modified Hausdorff Distance has been used to identify the similarity between the object and the given pattern. The multi-label method was developed for recognizing the patterns with more than one label, which performs the modified Hausdorff Distance twice. Experiments have been performed to verify the performance of the proposed algorithm and method for simple target image, complex target image, simple pattern, and complex pattern as well as the partially hidden object. It was proved via experiments that the proposed image matching algorithm for recognizing the object had a good performance of matching.

Face Detection using Color Information and AdaBoost Algorithm (색상정보와 AdaBoost 알고리즘을 이용한 얼굴검출)

  • Na, Jong-Won;Kang, Dae-Wook;Bae, Jong-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.843-848
    • /
    • 2008
  • Most of face detection technique uses information from the face of the movement. The traditional face detection method is to use difference picture method ate used to detect movement. However, most do not consider this mathematical approach using real-time or real-time implementation of the algorithm is complicated, not easy. This paper, the first to detect real-time facial image is converted YCbCr and RGB video input. Next, you convert the difference between video images of two adjacent to obtain and then to conduct Glassfire Labeling. Labeling value compared to the threshold behavior Area recognizes and converts video extracts. Actions to convert video to conduct face detection, and detection of facial characteristics required for the extraction and use of AdaBoost algorithm.