
An Improved Hybrid Approach to Parallel Connected Component Labeling using CUDA / 1

An Improved Hybrid Approach to Parallel Connected Component Labeling
using CUDA

Young-Sung Soh*, Hadi Ashraf*, and In-Taek Kim*

ABSTRACT

In many image processing tasks, connected component labeling (CCL) is performed to extract regions of interest. CCL

was usually done in a sequential fashion when image resolution was relatively low and there are small number of input

channels. As image resolution gets higher up to HD or Full HD and as the number of input channels increases, sequential

CCL is too time-consuming to be used in real time applications. To cope with this situation, parallel CCL framework was

introduced where multiple cores are utilized simultaneously. Several parallel CCL methods have been proposed in the

literature. Among them are NSZ label equivalence (NSZ-LE) method[1], modified 8 directional label selection (M8DLS)

method[2], and HYBRID1 method[3]. Soh [3] showed that HYBRID1 outperforms NSZ-LE and M8DLS, and argued that

HYBRID1 is by far the best. In this paper we propose an improved hybrid parallel CCL algorithm termed as HYBRID2

that hybridizes M8DLS with label backtracking (LB) and show that it runs around 20% faster than HYBRID1 for various

kinds of images.

Keywords : Connected Component Labeling (CCL), Parallel Connected Component Labeling, Compute Unified Device Architecture

(CUDA), Graphics Processing Unit (GPU)

I. Introduction

 In many image processing tasks, connected component

labeling (CCL) is performed to extract regions of interest.

Various approaches were proposed in the field of CCL.

Wu[9] divided CCL methods into 3 categories. They are

one-pass, two-pass, and multi-pass methods. One-pass

algorithm scans the image from top-left to bottom-right

just once and gives a new label to unlabeled pixel

encountered during scanning. Then all the pixels

connected to that pixel are searched recursively and are

 assigned the same label. This recursive label assignment

is performed until all pixels are labeled.

 Two-pass method consists of 3 steps. They are

scanning, analysis, and labeling steps. Scanning step

assigns an intial label to each pixel and keeps track of

equivalence relations among labels if necessary while

searching for neighbors.

 Analysis step determines a final label for each lavel

by resolving equivalence relation chains. Finally labeling

* 명지대학교 정보통신공학과
투고 일자 : 2014. 12. 29 수정완료일자 : 2015. 1. 26
게재확정일자 : 2015. 2. 2

step assigns a final label to each label. Multi-pass method

usually assumes some kind of local neighborhood to search

for minimum label within that neighborhood and records

label equivalence relations. This process is repeated until

all the pixels are labeled using equivalence relations and

no further change is detected in label assignment. Most of

the methods used for CCL, regardless of the number of

passes they adopt, were sequential[4][10]. Sequential CCL

can be used successfully in a single CPU system that

processes a small number of channels of image stream

with relatively low resolution. Though sequential CCL is a

computationally expensive operation, increasing power of

CPU enables sequential CCL run in real time for a few

input channels with relatively low resolution. However, as

the number of channels increases, say up to 32 or 64 and

as image resolution increases up to HD or Full HD, it

becomes very hard to process all high resolution input

streams in real time with CPU alone. To overcome this

difficulty it has been tried to implement CCL in parallel

framework using graphics processing units (GPUs).

The usage of GPUs with compute unified device

architecture (CUDA) developed by NVIDIA opened a new

 信號處理․시스템 學會 論文誌 16 卷 1 號 2015. 1 / 2
research era for the parallel implementation of CCL and

many other data processing algorithms[5]. The parallel

implementation of CCL using CUDA and GPUs drastically

reduced computation time. Among many parallel CCL

methods using CUDA proposed so far, HYBRID1[3] is

known to perform best.

In this paper, we present an improved hybrid method

termed as HYBRID2 for parallel CCL using CUDA. We

first give a unique and consecutive label to every pixel in

the image to produce initial label array. Next we apply

M8DLS[2] and label backtracking (LB) alternately. This

alternation is repeated until there is no change in label

assignment. M8DLS searches for minimum label of each

object pixel in 8 directions (east, west, south, north, and 4

diagonal directions) until background pixel is hit and

changes the label of that pixel with minimum label found.

In LB, for the label L of each object pixel, we backtrack

to the location L in initial label array and check if it has

a label L or not. If it does, we stop backtracking.

Otherwise we continue backtracking to the location

indicated by the label of previous backtracking location.

The proposed algorithm will be described in detail in later

section.

This paper is organized as follows. In section II, CUDA

and related works for CCL are presented. Section III

decribes the proposed method. Results are explained in

section IV and section V concludes the paper.

 II. Related Works

2.1 CUDA

CUDA is the language used to implement parallel

programs by utilizing GPUs on the graphics card

developed by NVIDIA. CUDA programming model has a

hierarchy as shown in Fig. 1.

Fig. 1. CUDA programming model

Grid is at the top and threads are at the bottom.

Grid has several blocks, each block has several warps,

and each warp has several threads. Usually a single warp

holds uo to 32 threads. Blocks are also called cores or

GPUs and all blocks run in parallel. All the threads in a

block use shared memory. To do parallel processing, input

image is fed from CPU to GPU global memory first.

Depending on the number of cores selected for use,

image in the GPU global memory is broken into sub

images and they are fed into block’s shared memories.

After parallel processing is done in each block, results are

combined to produce a single final output and can be

transmitted to CPU memory if necessary.

2.2 CCL

Since 1980s many approaches have been proposed for

the fast computation of CCL. Some of these approaches

were sequential[6][9][10] and some others were

parallel[1][2][3][7][8]. Suzuki[10] proposed a simple

sequential CCL suitable for the implementation in

hardware. However it is not fast enough since the

execution time of their method grows proportionally with

the number of pixels in connected components in an

image, hence making it not suitable for images with high

resolution.

Wu[9] proposed the scan based array union-find

algorithm which is basically an optimized version of

traditional two-pass algorithm. This algorithm performs 10

times better than contour tracing algorithm[6] and other

previous methods[10] in accessing the memory pattern in

CCL. However it suffers from the loss of efficiency

when images with small resolution are processed.

Chang[6] developed the contour tracing algorithm which

has a better computational speed than [9] and [10] but

consumes more time in accessing the memory pattern in

CCL.

Hawick[7] proposed parallel version of the label

equivalence algorithm using GPUs. As in two-pass

algorithm, their algorithm consists of three basic steps:

scanning, analysis and labeling. These steps are repeated

in a loop until all the object pixels are labeled correctly.

Since their method is implemented within parallel

framework, the execution time was greatly reduced.

However it consumes more memory in using the

reference array.

Kalentov[1] developed two parallel methods. The first

one is a simple row column unification method where

each row and column is assigned a single thread. Each

thread scans corresponding row or column in a predefined

direction, and changes the label of each pixel with the

minimum label found so far along the scan direction. This

process is repeated until all pixels are changed with

An Improved Hybrid Approach to Parallel Connected Component Labeling using CUDA / 3

minimum labels. The second method is the NSZ-LE where

each pixel is assigned a single thread. Each thread

searches for minimum label in immediate 4 neighbors,

keeps track of the label equivalence chain, and performs

relabeling by resolving equivalence chains.

Soh[8] proposed 8 directional label equivalence (8DLS)

method where the minimum label is searched in both

immediate and further 8 neighbors rather than only 4

immediate neighbors of the focused pixel until background

pixel is hit. Each object pixel is assigned a single thread

and all the threads run in parallel. This process is

repeated until all object pixels have minimum labels.

Soh[2] developed M8DLS which is an improved version

of 8DLS. They reduce the search space by not processing

the focused pixel if it already has minimum label, thus

saving execution time.

Soh[3] proposed HYBRID1 method where M8DLS and

modified kernel C (MKC)[7] are applied in alternate

fashion to increase the efficiency. It was shown that

HYBRID1 performs better than M8DLS.

Ⅲ. The Proposed Method

In this chapter, we propose a new parallel CCL method

termed as HYBRID2 which is a combination of M8DLS and

label backtracking (LB). First we present M8DLS and LB

in detail and then describe HYBRID2.

3.1 M8DLS

M8DLS[2] makes use of 8DLS[8]. The pseudo code for

the M8DLS method is given in Algorithm 1.

Algorithm 1 The M8DLS method in pseudo code
for i=1 to n iterations do

 for each pixel p in an image do

 if p is an object pixel

 then it becomes a focused pixel

 if (i>2) and (label of p is not the smallest)

 then apply 8DLS

 end if

 end if

 end for

if no label change for all the object pixels

then exit

end if

end for

In Algorithm 1, 8DLS is applied if some conditions are

met. The pseudo code for the 8DLS algorithm is given in

Algorithm 2 [8].

Algorithm 2 The 8DLS method in pseudo code

 for each pixel p in an image do

 if p is an object pixel

 then it becomes a focused pixel

 for i = 1 to 8 directions do

 search for minimum label until

background pixel is hit

 and put it in mini

 end for

 end if

 take minimum label m among mini , 1<= i <= 8

 and relabel the focused pixel with label m

end for

In 8DLS, 8 directional search(east, west, south, north,

and 4 diagonal directions) is performed for each object

pixel (focused pixel). Search continues until background

pixel is hit. While searching, minimum label is selected for

each direction, thus obtaining 8 intermediate minima. Final

minimum is the minimum of 8 intermediate minima. The

label of focused pixel is changed with the final minimum.

M8DLS is the modification of 8DLS in that, after second

iteration, the label of the focused pixel is checked if it is

the smallest so far. If it is not, 8DLS is applied.

Otherwise, no further processing is performed until next

checkup, thus saving computation time. Checking for

smallest is performed as follows. Let LABEL be an initial

label image array. Then after assigning initial label

sequentially to an image, LABEL(i) becomes i, for i = 0 to

(total number of pixels in the image) - 1 as in Fig. 2(a).

For focused pixel p having a label j, we check if

LABEL(j) is still j. If it is, we say that j is the smallest

label so far. Otherwise it is not the smallest since it has

already been changed, thus having a possibility of further

change. If LABEL(j) is changed to something else later,

then we apply 8DLS again to pixels having label j.

Algorithm halts when there is no label change for all the

object pixels in the image. The running appearance of

M8DLS for initial label array is exactly same as that of

8DLS since smallest checking is done from second

iteration. However, many pixels will not be processed

while producing the same results in later iterations. In

Fig. 2, we show a running example of M8DLS. Fig. 2(a) is

a sample input image that has been uniquely and

sequentially labeled according to the indices of the pixels

in the image. Here white pixel is an object pixel and the

shaded is a background pixel. Assuming 8-connectivity,

 信號處理․시스템 學會 論文誌 16 卷 1 號 2015. 1 / 4
there are two objects. Each object pixel is assigned a

single thread and the algorithm is executed only on object

pixels. Fig. 2(b), 2(c), and 2(d) depict the results obtained

after first, second, and third iterations respectively. To

see how it works, let us consider the pixel with label 27

underlined in Fig. 2(a). We search for 8 directions

(indicated by 8 black arrows which extend to either

background pixel or the boundary) and find that the label

9 (underlined in Fig. 2(a)) in 45° diagonal direction is the

minimum. Thus the label 27 is changed to 9 as underlined

in Fig. 2(b) at the same location. For this example 3

iterations were enough to correctly label all the object

pixels.

(a)

0 1 2 3 4 5 6 7 8 8

10 11 1 3 14 15 16 6 8 19

20 3 12 23 24 25 8 9 28 18

30 31 12 22 34 35 36 17 27 39

40 32 12 43 44 45 37 17 26 49

32 33 12 53 54 55 29 57 38 26
(b)

0 1 2 1 4 5 6 7 6 8

10 11 1 1 14 15 16 6 6 19

20 1 1 23 24 25 6 6 28 18

30 31 1 12 34 35 36 6 9 39

40 12 1 43 44 45 17 6 8 49

12 12 1 53 54 55 17 57 17 8
(c)

0 1 2 1 4 5 6 7 6 6

10 11 1 1 14 15 16 6 6 19

20 1 1 23 24 25 6 6 28 6

30 31 1 1 34 35 36 6 6 39

40 1 1 43 44 45 6 6 6 49

1 1 1 53 54 55 6 57 6 6
(d)

Fig. 2.. Running example of M8DLS method. (a) initial

label, (b) after first iteration, (c) after second iteration,

and (d) after third iteration

In Fig. 2(c), we put the underline for object pixels that

pass the “smallest” check described above. For left

and right objects, 9 out of 13 and 8 out of 16 pixels

were not processed respectively, thus saving great

amount of computation time.

In M8DLS, “smallest” label check is performed after

two iterations. This number was chosen empirically. We

conducted many experiments for various numbers of

iterations and for various kinds of test data, and found

that, after two iterations, most of object pixels already

has smallest label they ought to have due to deep

8-directional search characteristic of the method.

3.2 LB

Label backtracking (LB) is performed as follows. Let

LABEL(p) be the label of focused pixel p under

consideration. Then we backtrack to LABEL(LABEL(p)) and

check if the condition LABEL(LABEL(p)) == LABEL(p) is

met. If it is, then we stop, otherwise we further

backtrack to LABEL(LABEL(LABEL(p))) and check if the

condition LABEL(LABEL(LABEL(p))) == LABEL(LABEL(p))

is met. If it is, then we stop, otherwise we keep

backtracking until the condition is met. A running example

of LB is depicted in Fig. 3. As in Fig. 2(a), Fig. 3(a) is an

initial label array and Fig. 3(b) is the result after

executing M8DLS. We apply LB to Fig. 3(b) to get Fig.

3(c). Let us consider the pixel labeled 27 (underlined in

Fig. 3(b)) as the focused pixel. Since the label is 27, we

backtrack to the location which initially has label 27. The

location is underlined in Fig. 3(a). In that location, we

found that the label is 9 (underlined in Fig. 3(b)). Since

LABEL(27) != 27 in Fig. 3(b), we backtrack to the location

with initial label 9 (underlined in Fig. 3(a)). There we

found that the label is 8 (underlined in Fig. 3(b)). Since

LABEL(9) != 9 in Fig. 3(b), we backtrack to the location

with initial label 8. In that location, the label is 8 (marked

An Improved Hybrid Approach to Parallel Connected Component Labeling using CUDA / 5

within parenthesis in Fig. 3(b)) and the condition LABEL(8)

== 8 is met. Thus the label 27 of the focused pixel is

finally changed to 8 (underlined in Fig. 3(c)) and LB

processing for the focused pixel is completed. The arrows

depicted in Fig. 3(b) show the label backtracking route.

(a)

(b)

0 1 2 3 4 5 6 7 8 8

10 11 1 3 14 15 16 6 8 19

20 3 1 23 24 25 8 8 28 8

30 31 1 1 34 35 36 6 8 39

40 1 1 43 44 45 6 6 8 49

1 1 1 53 54 55 8 57 8 8

(c)

Fig. 3. Running example of LB method. (a) initial label, (b)

after applying M8DLS, and (c) after applying LB

3.3 HYBRID2

 HYBRID2 method is described in Algorithm 3. M8DLS

and LB are applied in alternate fashion. M8DLS and LB

are applied at odd and even iterations respectively.

Algorithm 3 The HYBRID2 method in pseudo code

for i=1 to n iterations do

 for each pixel p in an image do

 if p is an object pixel

 then it becomes a focused pixel

 if i % 2 == 1

 then apply M8DLS

 else apply LB

 end if

 end if

end for

if no label change for all the object pixels

then exit

end if

end for

Fig. 4 shows the running example of HYBRID2. Fig 4(a)

is the initial label. Fig 4(b), 4(c), 4(d), and 4(e) are results

after first, second, third, and fourth iteration respectively.

M8DLS was applied at first and third iterations, and LB

was applied at second and fourth iterations. In Fig. 4(e),

we can see that two objects are labeled correctly with

labels 1 and 6 that are minimum labels for two objects.

(a)

0 1 2 3 4 5 6 7 8 8

10 11 1 3 14 15 16 6 8 19

20 3 12 23 24 25 8 9 28 18

30 31 12 22 34 35 36 17 27 39

40 32 12 43 44 45 37 17 26 49

32 33 12 53 54 55 29 57 38 26

(b)

 信號處理․시스템 學會 論文誌 16 卷 1 號 2015. 1 / 6

0 1 2 3 4 5 6 7 8 8

10 11 1 3 14 15 16 6 8 19

20 3 1 23 24 25 8 8 28 8

30 31 1 1 34 35 36 6 8 39

40 1 1 43 44 45 6 6 8 49

1 1 1 53 54 55 8 57 8 8

(c)

0 1 2 1 4 5 6 7 6 8

10 11 1 1 14 15 16 6 6 19

20 1 1 23 24 25 6 6 28 8

30 31 1 1 34 35 36 6 6 39

40 1 1 43 44 45 6 6 6 49

1 1 1 53 54 55 6 57 6 6

(d)

0 1 2 1 4 5 6 7 6 6

10 11 1 1 14 15 16 6 6 19

20 1 1 23 24 25 6 6 28 6

30 31 1 1 34 35 36 6 6 39

40 1 1 43 44 45 6 6 6 49

1 1 1 53 54 55 6 57 6 6

(e)

Fig. 4. Running example of HYBRID2 method. (a) initial

label, (b) after applying M8DLS, (c) after applying LB, (d)

after applying M8DLS, and (e) after applying LB

Ⅳ. Experimental Results

The system specification used for the experiment is as

follows.

- CPU: Intel i7, 3.40 GHz

- OS: Windows 7

- GPU: NVIDIA Geforce GTX 550 Ti with 192 cores.

For the experiment, 8 types of images were used. All are

of size 320 x 240 with 8 bits/pixel. They are,

- B1, B2, B3, B4, and B5: Binary images with occupancy

ratio of 0.07, 0.17, 0.27, 0.36 and 0.46 respectively

- Spiral: Binary image with spiral pattern

- Random1 and Random2: Binary images that were

produced by scattering object pixels at the locations

generated by random number generator and have the

occupancy ratio of 0.1 and 0.5 respectively.

We compared the performance of M8DLS[2], HYBRID1

[3], and the proposed method (HYBRID2) in terms of

execution time. The comparison with NSZ-LE[1] is also

added for reference. Table 1 describes the comparison

results of execution time. We run each algorithm 100

times on each test image and take the average execution

time. Irrespective of the methods tested, when we go

from B1 to B5, execution time increases due to increasing

occupancies. The same observation can be made when we

go from Random1 to Random2. We can observe that

NSZ-LE is the worst and HYBRID2 takes a lot less

computation time than M8DLS and HYBRID1.

Table 1. Comparison of execution time (unit: msec)

Images NSZ-LE M8DLS HYBRID1
The

Proposed
(HYBRID2)

B1 26 7.93 7.72 6.29

B2 28 8.21 8.13 6.45

B3 30 8.51 8.32 6.57

B4 31 8.74 8.58 6.79

B5 34 9.13 8.99 6.83

Spiral 135 9.90 8.87 6.63

Random1 29.7 8.03 7.82 6.37

Random2 30.4 8.13 7.96 6.47

Table 2 shows the speedup percentage of HYBRID1

and HYBRID2 over M8DLS. HYBRID1 performs slightly

better than M8DLS, whereas HYBRID2 shows far better

performance. In average, HYBRID1 obtains 3.0% speedup

over M8DLS, while HYBRID2 achieves 23.3% speedup. This

speedup was achieved since, in LB, we look at only

necessary locations of label array by backtracking instead

of searching many other locations as in conventional

methods.

An Improved Hybrid Approach to Parallel Connected Component Labeling using CUDA / 7

Table 2. Comparison of speedup over M8DLS (unit:%)

Images HYBRID1
The Proposed
(HYBRID2)

B1 2.6 20.7

B2 1.0 21.4

B3 2.2 22.8

B4 1.8 22.3

B5 1.5 25.2

Spiral 10.4 33.0

Random1 2.6 20.7

Random2 2.1 20.4
Average
Speedup 3.0 23.3

Ⅴ. Conclusion

CCL is a necessary step in image segmentation and is

often implemented in parallel framework to reduce

execution time. Soh[2] compared NSZ-LE[1] with 8DLS[8]

and M8DLS, and showed that both 8DLS and M8DLS

outperformed NSZ-LE and M8DLS performs better than

8DLS. Soh[3] also proposed HYBRID1 that is the

combination of M8DLS and MKC, and showed a slight

improvement than previous methods. In this paper, we

proposed an improved hybrid parallel CCL method, termed

as HYBRID2, where we combine M8DLS with LB. We

showed that HYBRID2 outperforms all other conventional

methods for various kinds of images.

 Reference

[1] O. Kalentev, A. Rai, S. Kemnitz, and R. Schneider,

“Connected component labeling on a 2D grid using

CUDA”, J. Parallel Distributed Computing vol. 71,

pp. 615-620, 2011

[2] Y. Soh, H. Ashraf, Y. Hae and I. Kim, “Fast Parallel

Connected component labeling Algorithm in CUDA

based on 8-Directional Label Selection”,

International Journal of Latest Research in Science

and Technology, pp. 187-190, 2014

[3] Y. Soh, H. Ashraf, Y. Hae and I. Kim, "A Hybrid

Approach to Parallel Connected Component Labeling

Using CUDA," International Journal of Signal

Processing Systems, Vol. 1, No. 2, pp. 130-135, 2013

[4] A. Rosenfeld and A. Kak, Digital Picture Processing,

Orlando: Academic Press, 1982

[5] R. Farber, CUDA Application Design and

Development, Waltham: Elsevier, 2011

[6] F. Chang, C. Chen, and C. Lu, “A linear-time

Component-labeling algorithm using contour tracing

technique”, Computer Vision and Image

Understanding vol. 93 issue 2, pp. 206-220, 2004

[7] K. Hawick, A. Leist, and D. Playne, “Parallel graph

component labeling with GPUs and CUDA”, Parallel

Computing vol. 36 issue 12, 2010

[8] Y. Soh, H. Ashraf, Y. Hae and I. Kim,” A Simple

and Fast parallel Connected Component Labeling

using CUDA”, in Proceedings of International

Conference on Computer Applications and

Information Processing Technology, pp. 61-64, 2013.

[9] K. Wu, E. Otoo, and K. Suzuki, “Optimizing

two-pass connected-component labeling algorithms”,

Pattern Analysis & Applications vol. 12 issue 2, pp.

117-135, 2009

[10] K. Suzuki, I. Horiba, and N. Sugie, “Linear-time

connected-component labeling based on sequential

local operations”, Computer Vision and Image

Understanding vol. 89 issue 1, pp. 1-23, 2003

Young-Sung Soh

(Regular member)

received BS in electrical engineering in

1978 from Seoul National University and

MS and PhD in computer science from

the University of South Carolina in 1986

and 1989, respectively.

He is currently a professor in the Dept. of

Information and Communication Engineering, Myongji

University, Korea. His current interest of research

includes object tracking, stereo vision, and parallel

algorithms for image processing.

Hadi Ashraf

received BS in electrical engineering in

2010 from Govt. University in Lahore,

Pakistan and MS in information and

communication engineering from Myongji

University, Korea in 2014.

His current interest of research includes object

tracking, stereo vision and parallel algorithms for image

processing.

 信號處理․시스템 學會 論文誌 16 卷 1 號 2015. 1 / 8
In-Taek Kim

received BS and MS in electronics

engineering from Seoul National

University in 1980 and 1984

respectively, and PhD in electrical

engineering from Georgia Institute of

Technology in 1992.

He is now a professor in the Dept. of Information

and Communication Engineering, Myongji University. His

research interest includes pattern recognition, image

processing and smart grid area.

