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ABSTRACT

In many image processing tasks, connected component labeling (CCL) is performed to extract regions of interest. CCL 

was usually done in a sequential fashion when image resolution was relatively low and there are small number of input 

channels. As image resolution gets higher up to HD or Full HD and as the number of input channels increases, sequential 

CCL is too time-consuming to be used in real time applications. To cope with this situation, parallel CCL framework was 

introduced where multiple cores are utilized simultaneously. Several parallel CCL methods have been proposed in the 

literature. Among them are NSZ label equivalence (NSZ-LE) method[1], modified 8 directional label selection (M8DLS) 

method[2], and HYBRID1 method[3]. Soh [3] showed that HYBRID1 outperforms NSZ-LE and M8DLS, and argued that 

HYBRID1 is by far the best. In this paper we propose an improved hybrid parallel CCL algorithm termed as HYBRID2 

that hybridizes M8DLS with label backtracking (LB) and show that it runs around 20% faster than HYBRID1 for various 

kinds of images.

Keywords : Connected Component Labeling (CCL), Parallel Connected Component Labeling, Compute Unified Device Architecture 

(CUDA), Graphics Processing Unit (GPU) 

I. Introduction 

 In many image processing tasks, connected component 

labeling (CCL) is performed to extract regions of interest. 

Various approaches were proposed in the field of CCL. 

Wu[9] divided CCL methods into 3 categories. They are 

one-pass, two-pass, and multi-pass methods. One-pass 

algorithm scans the image from top-left to bottom-right 

just once and gives a new label to unlabeled pixel 

encountered during scanning. Then all the pixels 

connected to that pixel are searched recursively and are 

 assigned the same label. This recursive label assignment 

is performed until all pixels are labeled.

  Two-pass method consists of 3 steps. They are 

scanning, analysis, and labeling steps. Scanning step 

assigns an intial  label to each pixel and keeps track of 

equivalence relations among labels if necessary while 

searching for neighbors.

    Analysis step determines a final label for each lavel 

by resolving equivalence relation chains. Finally labeling 
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step assigns a final label to each label. Multi-pass method 

usually assumes some kind of local neighborhood to search 

for minimum label within that neighborhood and records 

label equivalence relations. This process is repeated until 

all the pixels are labeled using equivalence relations and 

no further change is detected in label assignment. Most of 

the methods used for CCL, regardless of the number of 

passes they adopt, were sequential[4][10]. Sequential CCL 

can be used successfully in a single CPU system that 

processes a small number of channels of image stream 

with relatively low resolution. Though sequential CCL is a 

computationally expensive operation, increasing power of 

CPU enables sequential CCL run in real time for a few 

input channels with relatively low resolution. However, as 

the number of channels increases, say up to 32 or 64 and 

as image resolution increases up to HD or Full HD, it 

becomes very hard to process all high resolution input 

streams in real time with CPU alone. To overcome this 

difficulty it has been tried to implement CCL in parallel 

framework using graphics processing units (GPUs).

The usage of GPUs with compute unified device 

architecture (CUDA) developed by NVIDIA opened a new 
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research era for the parallel implementation of CCL and 

many other data processing algorithms[5]. The parallel 

implementation of CCL using CUDA and GPUs drastically 

reduced computation time. Among many parallel CCL 

methods using CUDA proposed so far, HYBRID1[3] is 

known to perform best. 

In this paper, we present an improved hybrid method 

termed as HYBRID2 for parallel CCL using CUDA. We 

first give a unique and consecutive label to every pixel in 

the image to produce initial label array. Next we apply 

M8DLS[2] and label backtracking (LB) alternately. This 

alternation is repeated until there is no change in label 

assignment. M8DLS searches for minimum label of each 

object pixel in 8 directions (east, west, south, north, and 4 

diagonal directions) until background pixel is hit and 

changes the label of that pixel with minimum label found. 

In LB, for the label L of each object pixel, we backtrack 

to the location L in initial label array and check if it has 

a label L or not. If it does, we stop backtracking. 

Otherwise we continue backtracking to the location 

indicated by the label of previous backtracking location. 

The proposed algorithm will be described in detail in later 

section.

This paper is organized as follows. In section II, CUDA 

and related works for CCL are presented. Section III 

decribes the proposed method. Results are explained in 

section IV and section V concludes the paper.

 II. Related Works

2.1 CUDA

CUDA is the language used to implement parallel 

programs by utilizing GPUs on the graphics card 

developed by NVIDIA. CUDA programming model has a 

hierarchy as shown in Fig. 1.

Fig. 1. CUDA programming model

Grid is at the top and threads are at the bottom. 

Grid has several blocks, each block has several warps, 

and each warp has several threads. Usually a single warp 

holds uo to 32 threads. Blocks are also called cores or 

GPUs and all blocks run in parallel. All the threads in a 

block use shared memory. To do parallel processing, input 

image is fed from CPU to GPU global memory first. 

Depending on the number of cores selected for use, 

image in the GPU global memory is broken into sub 

images and they are fed into block’s shared memories. 

After parallel processing is done in each block, results are 

combined to produce a single final output and can be 

transmitted to CPU memory if necessary.

2.2 CCL

Since 1980s many approaches have been proposed for 

the fast computation of CCL. Some of these approaches 

were sequential[6][9][10] and some others were 

parallel[1][2][3][7][8]. Suzuki[10] proposed a simple 

sequential CCL suitable for the implementation in 

hardware. However it is not fast enough since the 

execution time of their method grows proportionally with 

the number of pixels in connected components in an 

image, hence making it not suitable for images with high 

resolution.

Wu[9] proposed the scan based array union-find 

algorithm which is basically an optimized version of 

traditional two-pass algorithm. This algorithm performs 10 

times better than contour tracing algorithm[6] and other 

previous methods[10] in accessing the memory pattern in 

CCL. However it suffers from the  loss of efficiency 

when images with small resolution are processed.

Chang[6] developed the contour tracing algorithm which 

has a better computational speed than [9] and [10]  but 

consumes more time in accessing the memory pattern in 

CCL. 

Hawick[7] proposed parallel version of the label 

equivalence algorithm using GPUs. As in two-pass 

algorithm, their algorithm consists of three basic steps: 

scanning, analysis and labeling. These steps are repeated 

in a loop until all the object pixels are labeled correctly. 

Since their method is implemented within parallel 

framework, the execution time was greatly reduced. 

However it consumes more memory in using the 

reference array.

Kalentov[1] developed two parallel methods. The first 

one is a simple row column unification method where 

each row and column is assigned a single thread. Each 

thread scans corresponding row or column in a predefined 

direction, and changes the label of each pixel with the 

minimum label found so far along the scan direction. This 

process is repeated until all pixels are changed with 
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minimum labels. The second method is the NSZ-LE where 

each pixel is assigned a single thread. Each thread 

searches for minimum label in immediate 4 neighbors, 

keeps track of the label equivalence chain, and performs 

relabeling by resolving equivalence chains.

Soh[8] proposed 8 directional label equivalence (8DLS) 

method where the minimum label is searched in both 

immediate and further 8 neighbors rather than only 4 

immediate neighbors of the focused pixel until background 

pixel is hit. Each object pixel is assigned a single thread 

and all the threads run in parallel. This process is 

repeated until all object pixels have minimum labels. 

Soh[2] developed M8DLS which is an improved version 

of 8DLS. They reduce the search space by not processing 

the focused pixel if it already has minimum label, thus 

saving execution time.

Soh[3] proposed HYBRID1 method where M8DLS and 

modified kernel C (MKC)[7] are applied in alternate 

fashion to increase the efficiency. It was shown that 

HYBRID1 performs better than M8DLS.

Ⅲ. The Proposed Method

In this chapter, we propose a new parallel CCL method 

termed as HYBRID2 which is a combination of M8DLS and 

label backtracking (LB). First we present M8DLS and LB 

in detail and then describe HYBRID2. 

3.1  M8DLS 

M8DLS[2] makes use of 8DLS[8]. The pseudo code for 

the M8DLS method is given in Algorithm 1.

Algorithm 1  The M8DLS method in pseudo code
for i=1 to n iterations do

  for each pixel p in an image do

    if p is an object pixel

    then it becomes a focused pixel

            if (i>2) and (label of p is not the smallest)

            then apply 8DLS

            end if

    end if

   end for

if no label change for all the object pixels

then exit

end if

end for

In Algorithm 1, 8DLS is applied if some conditions are 

met. The pseudo code for the 8DLS algorithm is given in 

Algorithm 2 [8].

Algorithm 2 The 8DLS method in pseudo code

   for each pixel p in an image do

      if p is an object pixel

   then  it becomes a focused pixel

         for i = 1 to 8 directions do 

            search for minimum label until 

background pixel is hit

            and put it in mini

         end for

    end if

    take minimum label m among mini , 1<= i <= 8  

 and relabel the focused pixel with label m

end for

In 8DLS, 8 directional search(east, west, south, north, 

and 4 diagonal directions) is performed for each object 

pixel (focused pixel). Search continues until background 

pixel is hit. While searching, minimum label is selected for 

each direction, thus obtaining 8 intermediate minima. Final 

minimum is the minimum of 8 intermediate minima. The 

label of focused pixel is changed with the final minimum. 

M8DLS is the modification of 8DLS in that, after second 

iteration, the label of the focused pixel is checked if it is 

the smallest so far. If it is not, 8DLS is applied. 

Otherwise, no further processing is performed until next 

checkup, thus saving computation time. Checking for 

smallest is performed as follows. Let LABEL be an initial 

label image array. Then after assigning initial label 

sequentially to an image, LABEL(i) becomes i, for i = 0 to 

(total number of pixels in the image) - 1 as in Fig. 2(a). 

For focused pixel p having a label j, we check if 

LABEL(j) is still j.  If it is, we say that j is the smallest 

label so far. Otherwise it is not the smallest since it has 

already been changed, thus having a possibility of further 

change. If LABEL(j) is changed to something else later, 

then we apply 8DLS again to pixels having label j. 

Algorithm halts when there is no label change for all the 

object pixels in the image. The running appearance of 

M8DLS for initial label array is exactly same as that of 

8DLS since smallest checking is done from second 

iteration. However, many pixels will not be processed 

while producing the same results in later iterations.  In 

Fig. 2, we show a running example of M8DLS. Fig. 2(a) is 

a sample input image that has been uniquely and 

sequentially labeled according to the indices of the pixels 

in the image. Here white pixel is an object pixel and the 

shaded is a background pixel.  Assuming 8-connectivity, 
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there are two objects. Each object pixel is assigned a 

single thread and the algorithm is executed only on object 

pixels. Fig. 2(b), 2(c), and 2(d) depict the results obtained 

after first, second, and third iterations respectively. To 

see how it works, let us consider the pixel with label 27 

underlined in Fig. 2(a). We search for 8 directions 

(indicated by 8 black arrows which extend to either 

background pixel or the boundary) and find that the label 

9 (underlined in Fig. 2(a)) in 45° diagonal direction is the 

minimum. Thus the label 27 is changed to 9 as underlined 

in Fig. 2(b) at the same location. For this example 3 

iterations were enough to correctly label all the object 

pixels. 

(a)

0 1 2 3 4 5 6 7 8 8

10 11 1 3 14 15 16 6 8 19

20 3 12 23 24 25 8 9 28 18

30 31 12 22 34 35 36 17 27 39

40 32 12 43 44 45 37 17 26 49

32 33 12 53 54 55 29 57 38 26
(b)

0 1 2 1 4 5 6 7 6 8

10 11 1 1 14 15 16 6 6 19

20 1 1 23 24 25 6 6 28 18

30 31 1 12 34 35 36 6 9 39

40 12 1 43 44 45 17 6 8 49

12 12 1 53 54 55 17 57 17 8
(c)

0 1 2 1 4 5 6 7 6 6

10 11 1 1 14 15 16 6 6 19

20 1 1 23 24 25 6 6 28 6

30 31 1 1 34 35 36 6 6 39

40 1 1 43 44 45 6 6 6 49

1 1 1 53 54 55 6 57 6 6
(d)

Fig. 2.. Running example of M8DLS method. (a) initial 

label, (b) after first iteration, (c) after second iteration, 

and (d) after third iteration

In Fig. 2(c), we put the underline for object pixels that 

pass the “smallest” check described above.  For left 

and right objects, 9 out of 13  and 8 out of 16 pixels 

were not processed respectively, thus saving  great 

amount of computation time.

In M8DLS, “smallest” label check is performed after 

two iterations. This number was chosen empirically. We 

conducted many experiments for various numbers of 

iterations and for various kinds of test data, and found 

that, after two iterations, most of object pixels already 

has smallest label they ought to have due to deep 

8-directional search characteristic of the method.

3.2 LB

Label backtracking (LB) is performed as follows. Let 

LABEL(p) be the label of focused pixel p under 

consideration. Then we backtrack to LABEL(LABEL(p)) and 

check if the condition LABEL(LABEL(p)) == LABEL(p) is 

met. If it is, then we stop, otherwise we further 

backtrack to LABEL(LABEL(LABEL(p))) and check if the 

condition  LABEL(LABEL(LABEL(p))) == LABEL(LABEL(p)) 

is met. If it is, then we stop, otherwise we keep 

backtracking until the condition is met. A running example 

of LB is depicted in Fig. 3. As in Fig. 2(a), Fig. 3(a) is an 

initial label array and Fig. 3(b) is the result after 

executing M8DLS. We apply LB to Fig. 3(b) to get Fig. 

3(c). Let us consider the pixel labeled 27 (underlined in 

Fig. 3(b)) as the focused pixel. Since the label is 27, we 

backtrack to the location which initially has label 27. The 

location is underlined in Fig. 3(a). In that location, we 

found that the label is 9 (underlined in Fig. 3(b)). Since  

LABEL(27) != 27 in Fig. 3(b), we backtrack to the location 

with initial label 9 (underlined in Fig. 3(a)). There we 

found that the label is 8 (underlined in Fig. 3(b)). Since 

LABEL(9) != 9 in Fig. 3(b), we backtrack to the location 

with initial label 8. In that location, the label is 8 (marked 
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within parenthesis in Fig. 3(b)) and the condition LABEL(8) 

== 8 is met. Thus the label 27 of the focused pixel is 

finally changed to 8 (underlined in Fig. 3(c)) and LB 

processing for the focused pixel is completed. The arrows 

depicted in Fig. 3(b) show the label backtracking route.

(a)

(b)

0 1 2 3 4 5 6 7 8 8

10 11 1 3 14 15 16 6 8 19

20 3 1 23 24 25 8 8 28 8

30 31 1 1 34 35 36 6 8 39

40 1 1 43 44 45 6 6 8 49

1 1 1 53 54 55 8 57 8 8

(c)

Fig. 3. Running example of LB method. (a) initial label, (b) 

after applying M8DLS, and (c) after applying LB

3.3 HYBRID2

   HYBRID2 method is described in Algorithm 3. M8DLS 

and LB are applied in alternate fashion. M8DLS and LB 

are applied at odd and even iterations respectively.

Algorithm 3  The HYBRID2 method in pseudo code

for i=1 to n iterations do

  for each pixel p in an image do

    if p is an object pixel

    then it becomes a focused pixel

         if i % 2 == 1  

         then apply M8DLS

         else apply LB

         end if

    end if

end for

if no label change for all the object pixels

then exit

end if

end for

Fig. 4 shows the running example of HYBRID2. Fig 4(a) 

is the initial label. Fig 4(b), 4(c), 4(d), and 4(e) are results 

after first, second, third, and fourth iteration respectively. 

M8DLS was applied at first and third iterations, and  LB 

was applied at second and fourth iterations. In Fig. 4(e), 

we can see that two objects are labeled correctly with 

labels 1 and 6 that are minimum labels for two objects.

(a)

0 1 2 3 4 5 6 7 8 8

10 11 1 3 14 15 16 6 8 19

20 3 12 23 24 25 8 9 28 18

30 31 12 22 34 35 36 17 27 39

40 32 12 43 44 45 37 17 26 49

32 33 12 53 54 55 29 57 38 26

(b)
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0 1 2 3 4 5 6 7 8 8

10 11 1 3 14 15 16 6 8 19

20 3 1 23 24 25 8 8 28 8

30 31 1 1 34 35 36 6 8 39

40 1 1 43 44 45 6 6 8 49

1 1 1 53 54 55 8 57 8 8

(c)

0 1 2 1 4 5 6 7 6 8

10 11 1 1 14 15 16 6 6 19

20 1 1 23 24 25 6 6 28 8

30 31 1 1 34 35 36 6 6 39

40 1 1 43 44 45 6 6 6 49

1 1 1 53 54 55 6 57 6 6

(d)

0 1 2 1 4 5 6 7 6 6

10 11 1 1 14 15 16 6 6 19

20 1 1 23 24 25 6 6 28 6

30 31 1 1 34 35 36 6 6 39

40 1 1 43 44 45 6 6 6 49

1 1 1 53 54 55 6 57 6 6

(e)

Fig. 4. Running example of HYBRID2 method. (a) initial 

label, (b) after applying M8DLS, (c) after applying LB, (d) 

after applying M8DLS, and (e) after applying LB

Ⅳ. Experimental Results 

The system specification used for the experiment is as 

follows.

- CPU: Intel i7, 3.40 GHz

- OS: Windows 7

- GPU: NVIDIA Geforce GTX 550 Ti with 192 cores.

For the experiment, 8 types of images were used. All are 

of size 320 x 240 with 8 bits/pixel. They are,

- B1, B2, B3, B4, and B5: Binary images with occupancy 

ratio of 0.07, 0.17, 0.27, 0.36 and 0.46 respectively

- Spiral: Binary image with spiral pattern

- Random1 and Random2: Binary images that were 

produced by scattering object pixels at the locations 

generated by random number generator and have the 

occupancy ratio of 0.1 and 0.5 respectively.

We compared the performance of M8DLS[2], HYBRID1 

[3], and the proposed method (HYBRID2) in terms of 

execution time. The comparison with NSZ-LE[1] is also 

added for reference. Table 1 describes the comparison 

results of execution time.  We run each algorithm 100 

times on each test image and take the average execution 

time. Irrespective of the methods tested, when we go 

from B1 to B5, execution time increases due to increasing 

occupancies. The same observation can be made when we 

go from Random1 to Random2. We can observe that 

NSZ-LE is the worst and HYBRID2 takes a lot less 

computation time than M8DLS and HYBRID1. 

Table 1. Comparison of execution time (unit: msec)

Images NSZ-LE M8DLS HYBRID1
The 

Proposed
(HYBRID2)

B1 26 7.93 7.72 6.29

B2 28 8.21 8.13 6.45

B3 30 8.51 8.32 6.57

B4 31 8.74 8.58 6.79

B5 34 9.13 8.99 6.83

Spiral 135 9.90 8.87 6.63

Random1 29.7 8.03 7.82 6.37

Random2 30.4 8.13 7.96 6.47

Table 2 shows the speedup percentage of HYBRID1 

and HYBRID2 over M8DLS.  HYBRID1 performs slightly 

better than M8DLS, whereas HYBRID2 shows far better 

performance. In average, HYBRID1 obtains 3.0% speedup 

over M8DLS, while HYBRID2 achieves 23.3% speedup. This 

speedup was achieved since, in LB, we look at only 

necessary locations of label array by backtracking instead 

of searching many other locations as in conventional 

methods.
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Table 2. Comparison of speedup over M8DLS (unit:%)

Images HYBRID1
The Proposed
(HYBRID2)

B1 2.6 20.7

B2 1.0 21.4

B3 2.2 22.8

B4 1.8 22.3

B5 1.5 25.2

Spiral 10.4 33.0

Random1 2.6 20.7

Random2 2.1 20.4
Average
Speedup 3.0 23.3

Ⅴ. Conclusion

CCL is a necessary step in image segmentation and is 

often implemented in parallel framework to reduce 

execution time. Soh[2] compared NSZ-LE[1] with 8DLS[8] 

and M8DLS, and showed that both 8DLS and M8DLS 

outperformed NSZ-LE and M8DLS performs better than 

8DLS. Soh[3] also proposed HYBRID1 that is the 

combination of M8DLS and MKC, and showed a slight 

improvement than previous methods. In this paper, we 

proposed an improved hybrid parallel CCL method, termed 

as HYBRID2, where we combine M8DLS with LB. We 

showed that HYBRID2 outperforms all other conventional 

methods for various kinds of images.    
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