• 제목/요약/키워드: labeling algorithm

검색결과 261건 처리시간 0.028초

비지도 학습을 기반으로 한 한국어 부사격의 의미역 결정 (Unsupervised Semantic Role Labeling for Korean Adverbial Case)

  • 김병수;이용훈;이종혁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권2호
    • /
    • pp.112-122
    • /
    • 2007
  • 말뭉치를 이용하여 통계적으로 의미역 결정(semantic role labeling)을 하기 위해서는, 의미역을 태깅하는 작업이 필수적이다. 그러나 한국어의 경우 의미역이 태깅된 대량의 말뭉치를 구하기 힘들며, 이를 직접 구축하기 위해서는 많은 시간과 노력이 필요한 문제점이 있다. 본 논문에서는 비지도 학습의 하나인 self-training 알고리즘을 적용하여, 의미역이 태깅되지 않은 말뭉치로부터 의미역을 결정하는 방법을 제안한다. 이를 위해, 세종 용언 전자사전의 격틀 정보를 이용하여 자동으로 학습 말뭉치를 구축하였으며, 확률 모델을 적용하여 점진적으로 학습하였다. 그 결과, 4개의 부사격 조사에 대해 평균적으로 83.00%의 정확률을 보였다.

A Fast and Precise Blob Detection

  • 빈흐타한
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2009년도 춘계 종합학술대회 논문집
    • /
    • pp.23-29
    • /
    • 2009
  • Blob detection is an essential ingredient process in some computer applications such as intelligent visual surveillance. However, previous blob detection algorithms are still computationally heavy so that supporting real-time multi-channel intelligent visual surveillance in a workstation or even one-channel real-time visual surveillance in a embedded system using them turns out prohibitively difficult. In this paper, we propose a fast and precise blob detection algorithm for visual surveillance. Blob detection in visual surveillance goes through several processing steps: foreground mask extraction, foreground mask correction, and connected component labeling. Foreground mask correction necessary for a precise detection is usually accomplished using morphological operations like opening and closing. Morphological operations are computationally expensive and moreover, they are difficult to run in parallel with connected component labeling routine since they need much different processing from what connected component labeling does. In this paper, we first develop a fast and precise foreground mask correction method utilizing on neighbor pixel checking which is also employed in connected component labeling so that the developed foreground mask correction method can be incorporated into connected component labeling routine. Through experiments, it is verified that our proposed blob detection algorithm based on the foreground mask correction method developed in this paper shows better processing speed and more precise blob detection.

  • PDF

MORE RELATIONS BETWEEN λ-LABELING AND HAMILTONIAN PATHS WITH EMPHASIS ON LINE GRAPH OF BIPARTITE MULTIGRAPHS

  • Zaker, Manouchehr
    • 대한수학회보
    • /
    • 제59권1호
    • /
    • pp.119-139
    • /
    • 2022
  • This paper deals with the λ-labeling and L(2, 1)-coloring of simple graphs. A λ-labeling of a graph G is any labeling of the vertices of G with different labels such that any two adjacent vertices receive labels which differ at least two. Also an L(2, 1)-coloring of G is any labeling of the vertices of G such that any two adjacent vertices receive labels which differ at least two and any two vertices with distance two receive distinct labels. Assume that a partial λ-labeling f is given in a graph G. A general question is whether f can be extended to a λ-labeling of G. We show that the extension is feasible if and only if a Hamiltonian path consistent with some distance constraints exists in the complement of G. Then we consider line graph of bipartite multigraphs and determine the minimum number of labels in L(2, 1)-coloring and λ-labeling of these graphs. In fact we obtain easily computable formulas for the path covering number and the maximum path of the complement of these graphs. We obtain a polynomial time algorithm which generates all Hamiltonian paths in the related graphs. A special case is the Cartesian product graph Kn☐Kn and the generation of λ-squares.

XML 데이타를 위한 EP2 레이블링 스킴 (EP2 Labeling Scheme for XML Data)

  • 진주용;배진욱;이석호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.79-81
    • /
    • 2004
  • 범위 기반 레이블링 스킴(range-based labeling scheme)을 이용하면 임의의 두 노드에 대한 조상-자손 관계를 쉽게 판별할 수 있으므로, XPath나 XQuery 형태의 질의를 효율적으로 처리할 수 있다. 그러나 노드의 삽입이 일어나는 동적인 상황에서는 불가피하게 전체 또는 일부의 레이블을 다시 할당(re-labeling)할 가능성이 있다는 문제점이 있다. 본 논문에서는 Dietz 레이블링 스킴을 개선한 EP2(extended preorder & postorder) 레이블링 스킴을 제안한다. 제안하는 스킴은 동일한 저장 공간상에서 범위 기반 레이블링 스킴에 비해 동적인 갱신에 유리하며, 기존의 구조 조인 알고리즘(structural join algorithm)을 이용하여 효율적으로 구조 질의(structural query)를 처리할 수 있다.

  • PDF

Resolving an entangled cord by consistent labeling

  • Nogami, Yuyo;Ishikawa, Seiji;Kato, Kiyoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.442-445
    • /
    • 1996
  • This paper proposes a technique for analyzing mutual relation of an entangled cord by consistent labeling. Cords are often entangled unexpectedly and sometimes they even produce knots. The purpose of this study is to provide an algorithm to resolve such entangled cords automatically. It may as well have applications in future to recognizing the structure of tree branches, angiography, abdominal intestines, etc.

  • PDF

객체 기반 3D 업체 영상 변환 기법 (Object-based Conversion of 2D Image to 3D)

  • 이왕로;강근호;유지상
    • 한국통신학회논문지
    • /
    • 제36권9C호
    • /
    • pp.555-563
    • /
    • 2011
  • 본 논문에서는 움직임 추정 (motion estimation, ME), 컬러 라벨링(labeling) 그리고 Non-local mean 필터를 이용하여 2D 영상을 3D 업체 영상으로 변환하는 기법을 제안한다. 제안하는 기법에서는 먼저 프레임 간의 움직임을 추정하여 객체의 움직임 벡터를 추출하고 주어진 영상에 대해 컬러 라벨링 작업을 수행하여 영상을 분리한다. 움직임 추정 결과와 컬러 라벨링 결과를 비교 분석하여 영상내의 객체를 추출하고 추출된 객체를 이동하여 우 영상을 생성하게 되는데 이때 우 영상을 생성하는 과정에서 채워지지 않은 가려짐 영역이 발생하며 전체 화소간의 상관도를 고려하는 Non-local mean 필터를 사용하여 보상한다. 이후 원본 영상인 좌 영상과 생성된 우 영상으로 비윌 주사하여 최종 3D 업체 영상을 재현한다. 실험 결과를 통해 제안된 기법으로 생성된 3D 업체 영상에서 객체위주의 안정된 업체 변환이 수행되는 것을 확인할 수 있었다.

SURF 알고리즘과 호모그래피을 이용한 파노라마 영상 재구성 (Panoramic Scene Reconstruction using SURF Algorithm and Homography)

  • 장현우;박창힐;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 추계학술대회
    • /
    • pp.203-205
    • /
    • 2010
  • 파노라마 영상을 재구성하는 기존의 방법은 Labeling을 이용하여 객체를 비교한 후에 결합시키는 방법을 적용하였으나 시간이 많이 소요되고 각각의 이미지를 Labeling하는 과정에서 개체 간의 불일치가 발생하여 정확히 영상을 결합할 수 없는 경우가 발생한다. 따라서 본 논문에서는 처리 속도 개선을 위하여 전체 이미지의 1/3만 Labeling한 후에 객체 간을 비교하여 결함시킨다. 그리고 각도가 틀린 경우에는 특징점을 찾아내는 SURF 알고리즘을 적용하여 각각의 이미지에서 Labeling한 사각형의 4개의 포인터에 대해 1개의 중심점을 구하여 Homography를 이용하여 2개의 영상을 자연스럽게 정합한다. 본 논문에서 제안한 파노라마 영상 재구성 방법의 성능을 평가하기 위하여 다양한 이미지를 대상으로 실험한 결과, 기존의 방법보다 영상을 재구성하는데 효과적인 것을 확인하였다. 그리고 처리 속도 측면에서도 개선되었다.

  • PDF

레이블링된 차량영상에서 번호판 영역 추출을 위한 기법 연구 (A study on license plate area extraction of labeling the vehicle images)

  • 박종대;박병호;최용석;성현경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.408-410
    • /
    • 2014
  • 본 논문에서는 자동차 번호판 인식을 위해 이진화과정을 거쳐 레이블링된 이미지에서 번호판 영역을 추출하기 위한 기법을 제안한다. 자동차 번호판 인식 시스템은 지금까지 많은 연구가 이루어지고 있으며, 번호판의 인식률도 점점 높아지고 있는 추세이다. 본 논문에서는 레이블링 이미지에서 자동차 번호판 영역을 추출하기 위한 관심 영역 설정에 대한 연구를 기술하였으며 레이블링을 위한 이미지 샘플은 오츠알고리즘을 이용하여 이진화 되었다.

  • PDF

윤곽추적 영역채색 기법 (Connected-component Labeling using Contour Following)

  • 심재창;이준재;하영호
    • 전자공학회논문지B
    • /
    • 제31B권5호
    • /
    • pp.95-107
    • /
    • 1994
  • A new efficient contour following algorithm for connected-component labeling processing is proposed. The basic idea of the algorithm is that the total number of downward chain codes is the same as one of upward chain codes along the closed contour. If the chain code direction is upward, then region start mark is assigned at the chain code departure pixel and if the chain code is downward, then region end mark is assigned at the chain code arrival pixel. The proposed algorithm extracts directly the contour information from only the current direction information of chain. This makes the algorithm simple and fast and requires less memory with comparison to the conventional algorithms.The proposed contour following algorithm can be applied to the various kind of image processing such as region filling, restoration and region feature extraction.

  • PDF

유전자 알고리즘을 이용한 그래프에서 L(2,1)-labeling 문제 연구 (Solving L(2,1)-labeling Problem of Graphs using Genetic Algorithms)

  • 한근희;김찬수
    • 정보처리학회논문지B
    • /
    • 제15B권2호
    • /
    • pp.131-136
    • /
    • 2008
  • 그래프 G = (V, E) 의 L(2,1)-labeling 이란 함수 f: V(G) $\rightarrow$ {0, 1, 2, ...} 를 정의하는 것으로서 함수 f 는 만일 G 내의 두 개 정점 u, $\upsilon$ 사이의 최단거리가 1 인 경우 $|f(u)\;-\;f(\upsilon)|\;{\geq}\;2$ 라는 조건 및 최단거리가 2 인 경우 $|f(u)\;-\;f(\upsilon)|\;{\geq}\;1$ 라는 조건을 만족시켜야 한다. ${\lambda}(G)$ 로 표기되는 G 의 L(2,1)-labeling 수는 모든 가능한 f 들 사이에서 사용된 가장 큰 정수가 가장 작은 값을 나타낸다. 상기한 문제는 NP-complete 계열의 문제이기 때문에 본 논문에서는 L(2,1)-labeling 에 적용 가능한 유전자 알고리즘을 개발한 후 개발된 알고리즘을 최적값이 알려진 그래프들에 적용하여 그 효율성을 보이고자 한다.