• Title/Summary/Keyword: label-free detection

Search Result 79, Processing Time 0.028 seconds

The Coordination of Pyridyl-N to Pentacyanoferrate for the Electrochemical Detecting Small Organic Molecules

  • Choi, Young-Bong;Jeon, Won-Yong;Kim, Hyug-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.595-599
    • /
    • 2013
  • The coordination of pyridyl-N to pentacyanoferrate for the detection of small organic antigens in solution is presented. The unique contribution of this paper is the direct conjugation of pyridyl-N in small organic antigens to pentacyanoferrate. Pentacyanoferrate is promising as an electrochemical label owing to its good electro-chemical properties, which can be utilized to generate an electrical signal in homogeneous electrochemical immunoassays. The facilely synthesized pyridyl-N to pentacyanoferrate was characterized by the electrochemical and spectroscopic methods. Hippuric acid (HA) has been detected competitively on the interaction of free HA and pentacyanoferrate-(4-aminomethylpyridine-hippuric acid) (Fe-HA) to its antibody, with the detection limit of 0.50 ${\mu}g\;mL^{-1}$. While pentacyanoferrate-based immunoassay is in its simplicity and infancy, the proposed immunoassay offers attractive opportunities for developing pyridyl-N-based the electrochemical detection of small organic antigens in the health care area.

Label-free Detection of the Transcription Initiation Factor Assembly and Specific Inhibition by Aptamers

  • Ren, Shuo;Jiang, Yuanyuan;Yoon, Hye Rim;Hong, Sun Woo;Shin, Donghyuk;Lee, Sangho;Lee, Dong-Ki;Jin, Moonsoo M.;Min, Irene M.;Kim, Soyoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1279-1284
    • /
    • 2014
  • The binding of TATA-binding protein (TBP) to the TATA-box containing promoter region is aided by many other transcriptional factors including TFIIA and TFIIB. The mechanistic insight into the assembly of RNA polymerase II preinitation complex (PIC) has been gained by either directly altering a function of target protein or perturbing molecular interactions using drugs, RNAi, or aptamers. Aptamers have been found particularly useful for studying a role of a subset of PIC on transcription for their ability to inhibit specific molecular interactions. One major hurdle to the wide use of aptamers as specific inhibitors arises from the difficulty with traditional assays to validate and determine specificity, affinity, and binding epitopes for aptamers against targets. Here, using a technique called the bio-layer interferometry (BLI) designed for a label-free, real-time, and multiplexed detection of molecular interactions, we studied the assembly of a subset of PIC, TBP binding to TATA DNA, and two distinct classes of aptamers against TPB in regard to their ability to inhibit TBP binding to TFIIA or TATA DNA. Using BLI, we measured not only equilibrium binding constants ($K_D$), which were overall in close agreement with those obtained by electrophoretic mobility shift assay, but also kinetic constants of binding ($k_{on}$ and $k_{off}$), differentiating aptamers of comparable KDs by their difference in binding kinetics. The assay developed in this study can readily be adopted for high throughput validation of candidate aptamers for specificity, affinity, and epitopes, providing both equilibrium and kinetic information for aptamer interaction with targets.

Sensitivity of a charge-detecting label-free DNA sensor using field-effect transistors (FETs) depending on the Debye length (전계효과 트랜지스터(FETs)를 이용한 전하 검출형 DNA 센서에서 Debye length에 따른 검출 감도)

  • Song, Kwang-Soup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.86-90
    • /
    • 2011
  • The effects of cations are very important in field-effect transistors (FETs) type DNA sensors detecting the intrinsic negative charge between single-stranded DNA and double-stranded DNA without labeling, because the intrinsic negative charge of DNA is neutralized by cations in electrolyte solution. We consider the Debye length, which depends on the concentration of cations in solution, to detect DNA hybridization based on the intrinsic negative charge of DNA. The Debye length is longer in buffer solution with a lower concentration of NaCl and the intrinsic negative charge of DNA is more effective on the channel surface in longer Debye length solution. The shifts in the gate voltage by DNA hybridization with complementary target DNA are 21 mV in 1 mM NaCl buffer solution, 7.2 mV in 10 mM NaCl buffer solution, and 5.1 mV in 100 mM NaCl buffer solution. The sensitivity of FETs to detect DNA hybridization based on charge detection without labeling depends on the Debye length.

Immunosensor for Detection of Escherichia coli O157:H7 Using Imaging Ellipsometry

  • Bae Young-Min;Park Kwang-Won;Oh Byung-Keun;Choi Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1169-1173
    • /
    • 2006
  • Imaging ellipsometry (IE) for detection of binding of Escherichia coli O157:H7 (E. coli O157:H7) to an immunosensor is reported. A protein G layer, chemically bound to a self-assembled layer of 11-mercaptoundecanoic acid (11-MUA), was adopted for immobilization of monoclonal antibody against E. coli O157:H7 (Mab). The immobilization of antibody was investigated using surface plasmon resonance. To fabricate antibody spots on a gold surface, protein G solution was spotted onto the gold surface modified with an 11-MUA layer, followed by immobilizing Mab on the protein G spot. Ellipsometric images of the protein G spot, the Mab spot, and Mab spots with binding of E. coli O157:H7 in various concentrations were acquired using the IE system. The change of mean optical intensity of the Mab spots in the ellipsometric images indicated that the lowest detection limit was $10^3$CFU/ml for E. coli O157:H7. Thus, IE can be applied to an immunosensor for detection of E. coli O157:H7 as a detection method with the advantages of allowing label-free detection, high sensitivity, and operational simplicity.

Organophosphorus Compounds Detection Using Suspended SWNT Films (부양형 탄소나노튜브 필름을 이용한 유기인 화합물 검출)

  • Kim, Intae;An, Taechang;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.346-351
    • /
    • 2013
  • We developed a one-step method for fabrication of addressable suspended SWNT films and demonstrate excellent detection performance of paraoxon based on OPH-immobilized SWNT films for environmental monitoring. For dispersed SWNT suspension, COOH-SWNT was prepared by the oxidation of carbon nanotubes using acid treatment and sonication. Suspended SWNT-film was fabricated between cantilever electrodes by dielectrophoretic force and surface tension of the water meniscus. After that, OPH were immobilized on suspended SWNT-films by nonspecific binding for enzymatic hydrolysis of paraoxon. The electrical properties of the SWNT films were measured in real time at room temperature. Structurally suspended SWNT films from substrate surface made possible rapid and highly sensitive detection of target molecules with increased convectional and diffusional fluxes of the molecules and with a large binding surface area. SWNT film FET resulted in a real-time, label-free, and electrical detection of paraoxon to the concentration of ca. $10{\mu}m$ with a step-wise rapid response time of several seconds.

Nanowell Array based Sensor and Its Packaging

  • Lee, JuKyung;Akira, Tsuda;Jeong, Myung Yung;Lee, Hea Yeon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.19-24
    • /
    • 2014
  • This article reviews the recent progress in nanowell array biosensors that use the label-free detection protocol, and are detected in their natural forms. These nanowell array biosensors are fabricated by nanofabrication technologies that should be useful for developing highly sensitive and selective also reproducible biosensors. Moreover, electrochemical method was selected as analysis method that has high sensitivity compared with other analysis. Finally, highly sensitive nanobiosensor was achieved by combining nanofabrication technologies and classical electrochemical method. Many examples are mentioned about the sensing performance of nanowell array biosensors will be evaluated in terms of sensitivity and detection limit compared with other micro-sized electrode without nanowell array.

Mercury ion detection technique using KPFM (KPFM을 통한 수은이온 검출 방법)

  • Park, Chanho;Jang, Kwewhan;Lee, Sangmyung;You, Juneseok;Na, Sungsoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.358-360
    • /
    • 2014
  • For the several decades, various nanomaterials are broadly used in industry and research. With the growth of nanotechnology, the study of nanotoxicity is being accelerated. Particularly, mercury ion is widely used in real life. Because the mercury is representative high toxic material, it is highly recommended to detect the mercury ion. In previous reported work, thymine-thymine mismatches (T-T) capture mercury ion and create very stable base pair ($T-Hg^{2+}-T$). Here, we performed the high sensitive sensing method for direct label free detection of mercury ions and DNA binding using Kelvin Probe Force Microscope (KPFM). In this method, 30 base pairs of thymine (T-30) is used for mercury specific DNA binding ($T-Hg^{2+}-T$). KPFM is able to detect the mercury ion because there is difference between bare T-30 DNA and mercury mediated DNA ($T-Hg^{2+}-T$).

  • PDF

Identification of Irradiated Foods by Using DNA, Immunochemical, and Biological Methods

  • Kim, Kyeung-Eun;Yang, Jae-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.4
    • /
    • pp.276-282
    • /
    • 1999
  • Ionizing radiation is considered to be an efficient technology to improve food safety and to extend food shelf-life in the food industry, and it has been used in food processing with a number of attributes. Food labeling should be established to enable the consumer to choose food freely, based on label information. A variety of methodologies to determine the physical, chemical, microbiological, and biological changes due to irradiation has been investigated in order to discriminate the irradiated and unirradiated food products for the consumer's free choice in food selection. However, no satisfactory method has been developed so far. In this review, various approaches based on DNA, immunochemical, and biological methods are addressed.

  • PDF

Label-free and sensitive detection of purine catabolites in complex solutions by surface-enhanced raman spectroscopy

  • Davaa-Ochir, Batmend;Ansah, Iris Baffour;Park, Sung Gyu;Kim, Dong-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.342-352
    • /
    • 2022
  • Purine catabolite screening enables reliable diagnosis of certain diseases. In this regard, the development of a facile detection strategy with high sensitivity and selectivity is demanded for point-of-care applications. In this work, the simultaneous detection of uric acid (UA), xanthine (XA), and hypoxanthine (HX) was carried out as model purine catabolites by surface-enhanced Raman Spectroscopy (SERS). The detection assay was conducted by employing high-aspect ratio Au nanopillar substrates coupled with in-situ Au electrodeposition on the substrates. The additional modification of the Au nanopillar substrates via electrodeposition was found to be an effective method to encapsulate molecules in solution into nanogaps of growing Au films that increase metal-molecule contact and improve substrate's sensitivity and selectivity. In complex solutions, the approach facilitated ternary identification of UA, XA, and HX down to concentration limits of 4.33 𝜇M, 0.71 𝜇M, and 0.22 𝜇M, respectively, which are comparable to their existing levels in normal human physiology. These results demonstrate that the proposed platform is reliable for practical point-of-care analysis of biofluids where solution matrix effects greatly reduce selectivity and sensitivity for rapid on-site disease diagnosis.

Polydiacetylene-Based Chemo-/Biosensor of Label Free System with Various Sensing Tools (다양한 감지 방법을 갖고 있는 폴리디아세틸렌 기반 비표지 화학/바이오센서)

  • Park, Hyun-Kyu;Park, Hyun-Gyu;Chung, Bong-Hyun
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.409-413
    • /
    • 2007
  • Polydiacetylene(PDA)-based sensors possess a number of properties that can be successfully applied for label-free detection system. PDA is one of the most attractive color-generating materials, with growing applications as sensors. Here we introduce various PDA-based devices, used as biosensor, chemosensor, thermosensor, and optoelectronics sensor. In general, PDA liposomes and films are closely packed and properly designed for polymerization via 1,4-addition reaction to form an ene-yne alternating polymer chain. PDA-based two/three dimensional structures have been used for colorimetric or fluorescent devices, sensing biological as well as chemical components. This color-generating material also present a very high charge carrier mobility, allowing its application as field-effect transistor (FET). The immobilized PDA structures or films have distinct advantages for the detection of low concentration target molecules over the aqueous solution-based detection systems. In the present review, reported detection methods by using various PDA structures are summarized with updated references.