• Title/Summary/Keyword: lOxidation Resistance

Search Result 71, Processing Time 0.028 seconds

A study on corrosion resistance and surface properties of AZ31 alloy according to Ca-GP addition during PEO treatment (PEO 처리시 Ca-GP첨가에 따른 AZ31합금의 내식성 및 표면특성에 관한 연구)

  • Lee, Jun-Su;Park, Je-Shin;Park, Il-Song
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.238-247
    • /
    • 2021
  • PEO (plasma electrolytic oxidation) was applied to modify the surface of AZ31 magnesium alloy in this study. The mixed solution of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) was used as the electrolyte, and 0 - 0.05 g/L of Ca-GP (Glycerol Phosphate Calcium salt) was added in the electrolyte as an additive. PEO treatment was conducted at a current density of 30mA/cm2 for 5 minutes using a DC power supply. The surface properties were identified by SEM, XRD and surface roughness analyses, and the corrosion resistance was evaluated by potentiodynamic polarization and immersion tests. In addition, the biocompatibility was evaluated by immersion test in SBF solution. As the concentration of Ca-GP was increased, the surface morphology was denser and more uniform, and the amount of Ca and the thickness of oxide layer increased. Only Mg peak was observed in XRD analysis due to very thin oxide layer. The corrosion resistance of PEO-treated samples increased with the concentration of Ca-GP in comparision with the untreated sample. In particular, the highest corrosion resistance was identified at the group of 0.04g Ca-GP through potentiodynamic polarization and immersion tests in saline solution (0.9 wt.%NaCl). During the immersion in saline solution, pH rapidly increased at the beginning of immersion period due to rapid corrosion, and then increase rate of pH decreased. However, the pH value in the SBF temporarily increased from 7.4 to 8.5 during the day, then decreased due to the inhibition of corrosion with HA(hydroxyapatite) formation.

Characterization of Ceramic Oxide Layer Produced on Commercial Al Alloy by Plasma Electrolytic Oxidation in Various KOH Concentrations

  • Lee, Jung-Hyung;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.119-124
    • /
    • 2016
  • Plasma electrolytic oxidation (PEO) is a promising coating process to produce ceramic oxide on valve metals such as Al, Mg and Ti. The PEO coating is carried out with a dilute alkaline electrolyte solution using a similar technique to conventional anodizing. The coating process involves multiple process parameters which can influence the surface properties of the resultant coating, including power mode, electrolyte solution, substrate, and process time. In this study, ceramic oxide coatings were prepared on commercial Al alloy in electrolytes with different KOH concentrations (0.5 ~ 4 g/L) by plasma electrolytic oxidation. Microstructural and electrochemical characterization were conducted to investigate the effects of electrolyte concentration on the microstructure and electrochemical characteristics of PEO coating. It was revealed that KOH concentration exert a great influence not only on voltage-time responses during PEO process but also on surface morphology of the coating. In the voltage-time response, the dielectric breakdown voltage tended to decrease with increasing KOH concentration, possibly due to difference in solution conductivity. The surface morphology was pancake-like with lower KOH concentration, while a mixed form of reticulate and pancake structures was observed for higher KOH concentration. The KOH concentration was found to have little effect on the electrochemical characteristics of coating, although PEO treatment improved the corrosion resistance of the substrate material significantly.

Optimization of an Advanced Oxidation with Ozone and Ceramic Membrane Integrated Process for Greywater Reuse (중수 재이용을 위한 오존 고도산화 및 세라믹 분리막 일체형 공정의 최적화 연구)

  • Lee, Jonghun;Rho, Hojung;Park, Kwang Duck;Woo, Yun Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.433-441
    • /
    • 2021
  • The aim of this study was to optimize the ozonation and ceramic membrane integrated process for greywater reclamation. The integrated process is a repeated sequential process of filtration and backwash with the same ceramic membrane. Also, this study used ozone and oxygen gas for the backwashing process to compare backwashing efficiency. The study results revealed that the optimum filtration and backwash time for the process was 10 minutes each when comparing the filtrate flow and membrane recovery rate. The integrated process was operated at three different operating conditions with i) 10 minutes for filtration and 10 minutes for ozonation, ii) 10 minutes for filtration and 10 minute for oxygen aeration, and iii) continuous filtration without any aeration for synthetic greywater. The integrated process with ozone backwashing could produce 0.55 L/min of filtrate with an average of 18.42% permeability recovery, while the oxygen backwashing produced 0.47 L/min and 6.26%, respectively. And without any backwashing, the integrated process could produce 0.29 L/min. This shows that the ozone backwash process is capable of periodically recovering from membrane fouling. The resistance of the fouled membrane was approximately 34.4% for the process with ozone backwashing, whereas the resistance was restored by 10.8% for the process with oxygen backwashing. Despite the periodical ozone backwashing and chemical cleaning, irreversible fouling gradually increased approximately 3 to 4%. Approximately 97.6% and 15% turbidity and TOC were removed by ceramic membrane filtration, respectively. Therefore, the integrated process with ozonation and ceramic membrane filtration is a potential greywater treatment process.

High Temperature Oxidation and Sulfidation of Ni-15at.%W Coatings

  • Kim Chanwou;You Teayoul;Shapovalov Yuriy;Ko Jaehwang;Lee Dongbok;Lee Kyuhwan;Chang Doyon;Kim Dongsoo;Kwon Sikchol
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Ni-15at.% W coatings with film thicknesses of 20-40 ㎛ were electroplated on a steel substrate, and their oxidation behavior was investigated at 700 and 800℃ in air. For comparison, a pure Ni coating and a bulk Ni were also oxidized. The Ni-15at.%W coating displayed the worst oxidation resistance, due to the formation of less-protective NiO, Fe₂O₃, NiFe₂O₄ and NiWO₄. The corrosion behavior Ni-15at.%W coatings electroplated on a steel substrate was similarly investigated at 700 and 800℃ in the Ar-l%SO₂ atmosphere. For comparison, the uncoated steel substrate was also corrosion-tested in the Ar-l %SO₂ atmosphere. Severe scale spallation and the internal corrosion of the steel that occurred in the uncoated substrate were not observed in the coated specimen. However, it seemed that the Ni-15at.%W coating cannot be a potential candidate as a sulfidation-resistant coating, due to the formation of less-protective NiO, NiS, WO₃ and NiWO₄.

Effect of Microstructure on the Environmentally Induced Cracking Behavior of Al-Zn-Mg-Cu-Zr Aluminum Alloy

  • Ghosh, Rahul;Venugopal, A.;Pradeep, PI;krishna, L. Rama;Narayanan, P. Ramesh;Pant, Bhanu;Cherian, Roy M
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.101-108
    • /
    • 2018
  • AA7010 is an Al-Zn-Mg-Cu alloy containing Zr, developed as an alternate to traditional AA7075 alloy owing to their high strength combined with better fracture toughness. It is necessary to improve the corrosion resistance and surface properties of the alloy by incorporating plasma electrolytic oxidation (PEO) method. AA7010-T7452 aluminum alloy has been processed through the forging route with multi-stage working operations, and was coated with $10{\mu}m$ thick $Al_2O_3$ ceramic aluminina coating using the plasma electrolytic oxidation (PEO) method. The corrosion, stress corrosion cracking (SCC) and nano-mechanical behaviours were examined by means of potentiodynamic polarization, slow strain rate test (SSRT) and nano-indentation tests. The results indicated that the additional thermomechanical treatment during the forging process caused a fully recrystallized microstructure, which lead to the poor environmental cracking resistance of the alloy in 3.5% NaCl solution, despite the overaging treatment. Although the fabricated PEO coating improved general corrosion resistance, the brittle nature of the coating did not provide any improvement in SCC resistance of the alloy. However, the hardness and elastic modulus of the coating were significantly higher than the base alloy.

NiAl Behavior at Plasma Spray Deposition

  • Orban, Radu L.;Lucaci, Mariana;Rosso, Mario;Grande, Marco Actis
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.692-693
    • /
    • 2006
  • Behavior of stoichiometric and near-stoichiometric NiAl at plasma spray deposition, without and with a bond coat, for coating layers realization on a low alloyed steel substrate, has been investigated. In all variants, NiAl particle melting and subsequent welding at the impact with substrate were observed, forming a relatively compact and adherent coating layer with the NiAl stability maintaining - all assuring the coating layer oxidation and corrosion resistance. Good results from these points of view, also validated through corrosion tests, were obtained for 45:55 Ni:Al composition without a bond coat but adopting an Ar protective surrounding of plasma jet.

  • PDF

Effect of AZ31 PEO Coating Layer Formation According to Alginic Acid Concentration in Electrolyte Solution

  • Kim, Min Soo;Kim, Jong Seop;Park, Su Jeong;Koo, Bon Heun
    • Korean Journal of Materials Research
    • /
    • v.32 no.6
    • /
    • pp.301-306
    • /
    • 2022
  • This study explored the possibility of forming a coating layer containing alginic acid on the surface of a magnesium alloy to be used as a biomaterial. We formed a coating layer on the surface of a magnesium alloy using a plasma electrolytic oxidation process in an electrolytic solution with different amounts of alginic acid (0 g/L ~ 8 g/L). The surface morphology of all samples was observed, and craters and nodules typical of the PEO process were formed. The cross-sectional shape of the samples confirmed that the thickness of the coating layer became thicker as the alginic acid concentration increased. It was confirmed that the thickness and hardness of the sample significantly increase with increasing alginic acid concentration. The porosity of the surface and cross section tended to decrease as the alginic acid concentration increased. The XRD patterns of all samples revealed the formation of MgO, Mg2SiO4, and MgF2 complex phases. Polarization tests were conducted in a Stimulate Body Fluid solution similar to the body's plasma. We found that a high amount of alginic acid concentration in the electrolyte improved the degree of corrosion resistance of the coating layer.

Effects of Alloying Elements on Sticking Occurring During Hot Rolling of Ferritic Stainless Steels (페라이트계 스테인리스강의 열간압연 시 발생하는 Sticking에 미치는 합금원소의 효과)

  • Ha, Dae Jin;Kim, Yong Jin;Lee, Jong Seog;Lee, Yong Deuk;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.593-603
    • /
    • 2008
  • In this study, effects of alloying elements on the sticking occurring during hot rolling of five kinds of ferritic STS430J1L stainless steels were investigated by analyzing high-temperature hardness and oxidation behavior of the rolled steels. Hot-rolling simulation tests were conducted by a high-temperature wear tester which could simulate actual hot rolling. The simulation test results revealed that the sticking process proceeded with three stages, i.e., nucleation, growth, and saturation. Since the hardness continuously decreased as the test temperature increased, whereas the formation of Fe-Cr oxides in the rolled steel surface region increased, the sticking of five stainless steels was evaluated by considering both the high-temperature hardness and oxidation effects. The addition of Zr, Cu, or Si had a beneficial effect on the sticking resistance, while the Ni addition did not show any difference in the sticking. Particularly in the case of the Si addition, Si oxides formed first in the initial stage of high-temperature oxidation, worked as initiation sites for Fe-Cr oxides, accelerated the formation of Fe-Cr oxides, and thus raised the sticking resistance by about 10 times in comparison with the steel without Si content.

Study on Antibiotic Resistant Enterobacteria in Pharmaceutical Effluent (제약회사 폐수처리장 방류수 중 항생제 내성 Enterobacteria에 관한 연구)

  • Kim, Jae-Gun;Kim, Young Jin
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.1
    • /
    • pp.34-40
    • /
    • 2016
  • Objectives: This study aims to examine the concentration, diversity, and antibiotic characteristics of penicillin G resistant enterobacteria present in pharmaceutical effluent. Methods: Water sampling was performed from a pharmaceutical company in Gyeonggi-do Province, Korea in March 2015. Water samples were plated in triplicate on tryptic soy agar plates with 32 mg/L of penicillin G. Penicillin G resistant enterobacteria were selected from the effluent and were subjected to 16S rRNA analysis for penicillin G resistant species determination. Identified resistant strains were tested for resistance to various antibiotics. Results: Penicillin G resistant enterobacteria were present at 6.2% as to culturable heterotrophic bacteria. Identified penicillin G resistant enterobacteria exhibited resistance to more than 10 of the antibiotics studied. These resistant bacteria are gram negative and are closely related to pathogenic species. Conclusion: Multi-antibiotic resistant bacteria in the effluent suggest a need for disinfection and advanced oxidation processes for pharmaceutical effluents.

A Study on Oxidation Behavior and Cytotoxicity Test of Ti-10Ta-10Nb Alloy (생체용 타이타늄 합금의 산화거동 및 세포독성에 관한 연구)

  • Cho, Hong-Kyu;Lee, Doh-Jae;Lee, Kwang-Min;Lee, Kyung-Ku
    • Journal of Technologic Dentistry
    • /
    • v.26 no.1
    • /
    • pp.97-104
    • /
    • 2004
  • A new Ti-10Ta-10Nb alloy has designed and examined some possibility of forming more passive oxide film by oxidation treatment which is closely related to corrosion resistance and biocompatibility. Ti-6Al-4V and Ti-10Ta-10Nb alloys were prepared by consumable vacuum arc melting and homogenized at 1050$^{\circ}C$ for 24hours. Alloy specimens were oxidized at the temperature range of 400 to 750$^{\circ}C$ for 30minutes, and the oxide films on Ti alloys were analysed by optical microscope, SEM, XPS and TGA. Cytotoxicity test was performed in MTT assay treated L929 fibroblast cell culture by indirect method. It is found out that the oxide film on Ti-10Ta-10Nb alloy is denser and thinner compared to Ti-6Al-4V alloy. The weight gain during the oxidation was increased rapidly at the temperature above 650$^{\circ}C$ for Ti-6Al-4V alloy and above 700$^{\circ}C$ for Ti-10Ta-10Nb alloy respectively. It was analysed that the passive film of the Ti alloys consisted of TiO2 through X-ray photoelectron spectroscopy (XPS) analysis. It is found out by cytotoxicity test that moderate oxidation treatment lowers cell toxicity, and Ti-10Ta-10Nb alloy showed better result compared to Ti-6Al-4V alloy.

  • PDF