• 제목/요약/키워드: l2-norm

검색결과 219건 처리시간 0.026초

강인한 역산으로서의 하이브리드 $l^1/l^2$ norm IRLS 방법의 효율적 구현기법 (An Efficient Implementation of Hybrid $l^1/l^2$ Norm IRLS Method as a Robust Inversion)

  • 지준
    • 지구물리와물리탐사
    • /
    • 제10권2호
    • /
    • pp.124-130
    • /
    • 2007
  • 탄성파 역산에 있어서 가장 널리 사용되는 최소자승($l^2$ norm)해는 이상치(outlier)에 매우 민감하게 반응하는 경향이 있다. 이에 반해서 $l^1$ norm을 최소화하는 해는 이상치에 강인한 면을 보이나 일반적으로 좀 더 많은 계산이 필요하다. 반복적가중의 최소자승법(Iteratively reweighted least squares [IRLS] method)을 이용하면 이러한 $l^1$ norm 문제의 근사해(approximate solution)를 효율적으로 구할 수 있다. 본 논문에서는 작은 크기의 잔여분은 $l^2$ norm으로 처리하며, 큰 크기의 잔여분은 $l^1$ norm으로 처리하는 하이브리드 $l^1/l^2$ norm 최소화를 IRLS 방법에 쉽게 적용하는 구현 기법을 소개한다. 소개된 알고리즘은 특이치(singularity)처리를 위한 임계값의 결정에 민감하게 반응하는 기존의 $l^1$ norm IRLS 방법과는 달리 임계값 결정에 상관없이 늘 강인한 역산의 특성을 보여준다.

THE $L_2$ NORM OF B$\acute{E}$ZIER CURVES

  • BYUNG-GOOK LEE
    • Journal of applied mathematics & informatics
    • /
    • 제3권2호
    • /
    • pp.245-252
    • /
    • 1996
  • We described a relationship of the $L_2$ norm of the $L_2$norm of a Bzier curve and l2 norm of its confrol points. The use of Bezier curves finds much application in the general description of curves and surfaces and provided the mathematical basis for many computer graphics system. We define the $L_2$ norm for Bezier curves and find a upper and lower bound for many computer graphics system. We define the $L_2$ norm for Bezier curves and find a upper and lower bound for the $L_2$ norm with respect to the $L_2$ norm for its control points for easy computation.

다중 정규화 매개 변수를 이용한 혼합 norm 영상 복원 방식 (A Mixed Norm Image Restoration Algorithm Using Multi Regularization Parameters)

  • 최권열;김명진;홍민철
    • 한국통신학회논문지
    • /
    • 제32권11C호
    • /
    • pp.1073-1078
    • /
    • 2007
  • 본 논문에서는 다중 정규화 매개 변수를 이용한 혼합 norm 영상 복원 방식을 제안한다. 임의의 분포를 갖는 첨가 노이즈를 효율적으로 제거하기 위해 정규화 완화 $l_2$ 함수와 정규화 완화 $l_4$ 함수를 결합한 새로운 혼합 norm 정규화 완화 함수가 유도된다. 각 완화 함수의 완화도를 제어하기 위해 개별적인 정규화 매개 변수가 정의되고, 정규화 완화 $l_2$ 함수와 정규화 완화 $l_4$ 함수의 상대적 기여도를 제어하기 위한 혼합 norm 정규화 매개 변수가 kurtosis를 이용해 정의된다. 안정적인 해를 얻기 위해 반복기법이 사용되었으며, 이들의 수렴 여부가 분석되었다. 다양한 분포를 갖는 첨가 노이즈가 실험에 사용되었으며, 이를 통해서 제안된 방식의 성능을 평가할 수 있었다.

L0 Norm 기반의 LE(Local Effect) 연산자를 이용한 디지털 이미지 위변조 검출 기술 개발 (Development of Digital Image Forgery Detection Method Utilizing LE(Local Effect) Operator based on L0 Norm)

  • 최용수
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제16권2호
    • /
    • pp.153-162
    • /
    • 2020
  • 디지털 이미지 위조 탐지는 디지털 포렌식 분야에서 매우 중요한 분야 중 하나이다. 기술의 발전을 통해 위조된 이미지가 자연스럽게 바뀜에 따라 이미지 위조를 감지하기 어렵게 만들었다. 본 논문에서는 디지털 이미지에서 복사 붙여넣기 위조에 대한 수동적 위조 검출을 이용한다. 또한, L0 Norm 기반 LE 연산자를 사용해 복사 붙여넣기 위조를 검출함과 동시에 기존에 존재하던 L2, L1 Norm 기반 LE 연산자를 이용한 위조 검출 정확도를 비교하였다. 제안한 하삼각 윈도우를 적용하고 L2, L1 및 L0 Norm 기반 LE 연산자를 통해 BAG 불일치를 검출하고 위조 검출률을 측정하였다. 검출률의 비교에서 제안한 하삼각 윈도우는 기존의 윈도우 필터보다 BAG 불일치 검출에 강인함을 볼 수 있었다. 또한, 하삼각 윈도우를 쓰는 경우 L2, L1, L0 Norm LE 연산으로 갈수록 이미지 위조 검출의 성능이 점점 높게 측정되었다.

lp-norm regularization for impact force identification from highly incomplete measurements

  • Yanan Wang;Baijie Qiao;Jinxin Liu;Junjiang Liu;Xuefeng Chen
    • Smart Structures and Systems
    • /
    • 제34권2호
    • /
    • pp.97-116
    • /
    • 2024
  • The standard l1-norm regularization is recently introduced for impact force identification, but generally underestimates the peak force. Compared to l1-norm regularization, lp-norm (0 ≤ p < 1) regularization, with a nonconvex penalty function, has some promising properties such as enforcing sparsity. In the framework of sparse regularization, if the desired solution is sparse in the time domain or other domains, the under-determined problem with fewer measurements than candidate excitations may obtain the unique solution, i.e., the sparsest solution. Considering the joint sparse structure of impact force in temporal and spatial domains, we propose a general lp-norm (0 ≤ p < 1) regularization methodology for simultaneous identification of the impact location and force time-history from highly incomplete measurements. Firstly, a nonconvex optimization model based on lp-norm penalty is developed for regularizing the highly under-determined problem of impact force identification. Secondly, an iteratively reweighed l1-norm algorithm is introduced to solve such an under-determined and unconditioned regularization model through transforming it into a series of l1-norm regularization problems. Finally, numerical simulation and experimental validation including single-source and two-source cases of impact force identification are conducted on plate structures to evaluate the performance of lp-norm (0 ≤ p < 1) regularization. Both numerical and experimental results demonstrate that the proposed lp-norm regularization method, merely using a single accelerometer, can locate the actual impacts from nine fixed candidate sources and simultaneously reconstruct the impact force time-history; compared to the state-of-the-art l1-norm regularization, lp-norm (0 ≤ p < 1) regularization procures sufficiently sparse and more accurate estimates; although the peak relative error of the identified impact force using lp-norm regularization has a decreasing tendency as p is approaching 0, the results of lp-norm regularization with 0 ≤ p ≤ 1/2 have no significant differences.

Two Dimensional Slow Feature Discriminant Analysis via L2,1 Norm Minimization for Feature Extraction

  • Gu, Xingjian;Shu, Xiangbo;Ren, Shougang;Xu, Huanliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권7호
    • /
    • pp.3194-3216
    • /
    • 2018
  • Slow Feature Discriminant Analysis (SFDA) is a supervised feature extraction method inspired by biological mechanism. In this paper, a novel method called Two Dimensional Slow Feature Discriminant Analysis via $L_{2,1}$ norm minimization ($2DSFDA-L_{2,1}$) is proposed. $2DSFDA-L_{2,1}$ integrates $L_{2,1}$ norm regularization and 2D statically uncorrelated constraint to extract discriminant feature. First, $L_{2,1}$ norm regularization can promote the projection matrix row-sparsity, which makes the feature selection and subspace learning simultaneously. Second, uncorrelated features of minimum redundancy are effective for classification. We define 2D statistically uncorrelated model that each row (or column) are independent. Third, we provide a feasible solution by transforming the proposed $L_{2,1}$ nonlinear model into a linear regression type. Additionally, $2DSFDA-L_{2,1}$ is extended to a bilateral projection version called $BSFDA-L_{2,1}$. The advantage of $BSFDA-L_{2,1}$ is that an image can be represented with much less coefficients. Experimental results on three face databases demonstrate that the proposed $2DSFDA-L_{2,1}/BSFDA-L_{2,1}$ can obtain competitive performance.

다중 정규화 매개 변수를 이용한 혼합 norm 영상 복원 방식 (A Mixed Norm Image Restoration Algorithm Using Multi Regularized Parameters)

  • 김도령;홍민철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.489-492
    • /
    • 2003
  • In this paper, we propose an iterative mixed norm image restoration algorithm using multi regularization parameters. A functional which combines the regularized l$_2$ norm functional and the regularized l$_4$ functional is proposed. The smoothness of each functional is determined by the regularization parameters. Also, a regularization parameter is used to determine the relative importance between the regularized l$_2$ functional and the regularized l$_4$ functional. An iterative algorithm is utilized for obtaining a solution and its convergence is analyzed.

  • PDF

전기 저항 단층촬영법에서의 조정기법 성능비교 (Performance Comparison of Regularization Methods in Electrical Resistance Tomography)

  • 강숙인;김경연
    • 전기전자학회논문지
    • /
    • 제20권3호
    • /
    • pp.226-234
    • /
    • 2016
  • 전기 저항 단층촬영법(ERT)은 대상체 내부 단면의 저항률 분포를 추정하고 이를 영상화하는 기술이다. ERT의 영상복원은 매우 비정치성이 강한 역문제의 일종으로 의미있는 영상을 얻기 위해서는 조정기법이 사용된다. 대표적으로 l2-norm 조정기법, l1-norm 조정기법, Total Variation 조정기법이 사용되며, 조정기법에 따라 ERT의 영상복원 성능이 달라진다. 즉, 상황에 맞는 적절한 조정기법의 사용은 ERT 영상 복원을 개선할 수 있다. 따라서, 본 논문에서는 모의실험을 통하여 상황에 따른 세 가지 조정기법의 영상복원 성능을 비교하였다.

MFCC와 L2-norm 최소화를 이용한 고래소리의 재생 (Whale Sound Reconstruction using MFCC and L2-norm Minimization)

  • 정의필;전서윤;홍정필;조세형
    • 융합신호처리학회논문지
    • /
    • 제19권4호
    • /
    • pp.147-152
    • /
    • 2018
  • 수중에서의 일시적인 신호는 복잡하고, 변화가 심하며, 비선형적이므로 신호의 패턴을 정확히 모델링하기 어렵다. 본 논문에서는 수중 신호 중 하나인 고래 소리를 선택하여 음성분석 기법에 많이 사용하는 Cepstral 분석에 의한 MFCC 추출법을 이용하여 분석하였고, MFCC와 $L_2$-norm 최소화 기법을 이용하여 고래소리를 재생하였다 실험 분석에 사용된 고래의 종류는 혹등고래(Humpback whale), 참고래(Right whale), 대왕고래(Blue whale), 귀신고래(Gray whale), 밍크고래(Minke whale) 등 5종으로서 과거 한반도 동해안에 출몰한 적이 있는 고래들이다. 원본 고래소리에서 MATLAB프로그래밍을 이용하여 20차 MFCC계수들을 추출한 후 이를 가중 $L_2$-norm 최소화를 이용한 MFCC역변환을 통해 재생한다. 최종적으로 가중치가 3~4의 값에서 고래소리 재생이 가장 적합함을 알 수 있었다.

Norm and Numerical Radius of 2-homogeneous Polynomials on the Real Space lp2, (1 < p > ∞)

  • Kim, Sung-Guen
    • Kyungpook Mathematical Journal
    • /
    • 제48권3호
    • /
    • pp.387-393
    • /
    • 2008
  • In this note, we present some inequalities for the norm and numerical radius of 2-homogeneous polynomials from the 2-dimensional real space $l_p^2$, (1 < p < $\infty$) to itself in terms of their coefficients. We also give an upper bound for n^{(k)}(l_p^2), (k = 2, 3, $\cdots$).