• Title/Summary/Keyword: kyanite

Search Result 23, Processing Time 0.022 seconds

Polymetamorphism of Metapelites in the Sunchang Shear Zone, Southwestern part of the Korea peninsula (한반도 남서부의 순창전단대 내에 분포하는 변성퇴적암류의 다변성 작용)

  • 안건상
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.519-535
    • /
    • 1999
  • Precambrian metasedimetay rocks in the Sunchang Shear Zone (so-called Seologri and Yongamsan Formation) consist of black slate, phylite, mica schistm quartzite and rarely calc schist. The metamorphic rocks in the area have undergone at least three stages of metamorphism, which are two prograde (M1 and M2) and one contact metamorphism (M3). The metamorphism which made the most prevailing mineral assemblages in the area, is M2 stage metamorphism. The metamorphic grade of M2 methamorphism in metapelites increases from the Chlorite zone through Biotituzone, Garnet zone to Staurolite zone. The M1 stage metamorphism is recognized by kyanite and sillimanite pressure type regional metamorphism. The M3 stage methamorphism is represented in the contact boundary, which area is the chlorite zone and biotite zone near the Sunchang foliated granite and the namwon granite. The M3 stage methamorphism is characterized by andalusite bearing mineral assemblages. The peak temperature condition of M2 metamorphism estimated from coexising garnet and biotite (Kretz, 1990) is 518~598$^{\circ}C$.

  • PDF

Phase identification and degree of orientation measurements far fine-grained rock forming minerals using micro-area X-ray diffractometer -$Al_{2}SiO_{5}$ Polymorphs- (미소부 X-선 회절분석기를 이용한 미립조암광물의 상동정 및 배향도 측정 -$Al_{2}SiO_{5}$ 3상다형-)

  • 박찬수;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.205-210
    • /
    • 2000
  • Measurements of phase identification and degree of orientation for fine-grained (about 0.3 mm in diameter) minerals in rock samples performed by micro-area X-ray diffractometer.$Al_{2}SiO_{5}$ polymorphs (andalusite, kyanite and sillimanite) were chosen for the measurements and target minerals were existed on thin sections. Micro-area X-ray diffractometer is composed of 3(${\omega}\;{\chi}\;{\phi}$)-circle oscillating goniometer and position sensitive proportional counter (PSPC). $CuK_{\alpha}$ radiation was used as X-ray source and a pin hole ($50\;\mu\textrm{m}$$ in diameter) collimator was selected to focus radiation X-ray onto the target minerals. Phase identification and diffracted X-ray peak indexing were carried out by 3(${\omega}\;{\chi}\;{\phi}$)-circle oscillation measurement. Then, 2(${\omega}\;{\phi}$)-circle oscillation measurement was made for the purpose of searching the prevailing lattice plane of the minerals on thin section surface. Finally, for a selected peak by 2-circle oscillation measurement, X-ray pole figure measurement was executed for the purpose of check the degree of orientation of the single lattice direction and examine its pole distribution. As a result of 3-circle oscillation measurement, it was possible that phase identification among $Al_{2}SiO_{5}$ polymorphs. And from the results of 2-circle oscillation measurement and X-ray pole figure measurement, we recognized that poles of andalusite (122), kyanite (200) and sillimanite (310) lattice plances were well developed with direction normal to each mineral surface plane respectively. Therfore, the measurements used with micro-area X-ray diffractometer in this study will be a useful tool of phase identification and degree of orientation measurement for fine-grained rock forming minerals.

  • PDF

Interpretations of Staurolite Porphyroblast and Pseudomorph Formed During Polymetamorphism Using THERMOCALC (THERMOCALC를 이용한 다변성작용 동안 성장한 십자석 반상변정과 가상의 해석)

  • Kim Hyeong-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.1 s.43
    • /
    • pp.10-24
    • /
    • 2006
  • Staurolite grains in staurolite, kyanite and sillimanite zones occurred in the Littleton Formation, Northcentral Massachusetts have interpreted to form by Barrovian-type metamorphism during Acadian orogeny. However, various occurrence of staurolite in the three zones, (a) porphyroblast, (b) randomly oriented and coarse-grained muscovite pseudomorph after staurolite, (c) recrystallized staurolite at the margin of garnet porphyroblast and within the pseudomorph, indicates that they have resulted from polymetamorphism. Staurolite in these three metamorphic zones can be formed by demise of chlorite or chloritoid that depends on difference of bulk-rock compositions and changes of P-T conditions. Staurolite modal proportion calculated in MnNCKFHASH system using THERMOCALC program reveals that staurolite could have grown with garnet with increasing pressure and temperature, if it coexist with chlorite. After demise of chlorite and appearance of biotite, staurolite mode decrease with increasing pressure and temperature. Therefore, based on the previous P-T paths for the Acadian metamorhism, staurolite porphyroblast grew with garnet during 400-370 Ma. Randomly oriented and coarse-grained muscovite pseudomorphs after staurolite probably have grown due to heating with appearance of kyanite and sillimanite. Consequently, pseudomorphisrn of staurolite occurred by heating derived from locally intense Alleghanian shearing (ca. 320-300 Ma) overprinted the Acadian metamorphism. Recrystallized fine-grained staurolite in sillimanite zone observed between the grain boundaries of muscovite in the pseudomorphs and at the edge of garnet porphyrobasts has formed during decreasing temperature and pressure (ca. 300-280 Ma) after peak temperature (ca. $700^{\circ}C$) of the Allegllanian metamorphism.

Assessing the effects of mineral content and porosity on ultrasonic wave velocity

  • Fereidooni, Davood
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.399-406
    • /
    • 2018
  • The influences of mineral content and porosity on ultrasonic wave velocity were assessed for ten hornfelsic rocks collected from southern and western parts of the city of Hamedan, western Iran. Selected rock samples were subjected to mineralogical, physical, and index laboratory tests. The tested rocks contain quartz, feldspar, biotite, muscovite, garnet, sillimanite, kyanite, staurolite, graphite and other fine grained cryptocrystalline matrix materials. The values of dry unit weight of the rocks were high, but the values of porosity and water absorption were low. In the rocks, the values of dry unit weight are related to the presence of dense minerals such as garnet so not affected by porosity. The statistical relationships between mineral content, porosity and ultrasonic wave velocity indicated that the porosity is the most important factor influencing ultrasonic wave velocity of the studied rocks. The values of P-wave velocity of the rocks range from moderate to very high. Empirical equations, relevant to different parameters of the rocks, were proposed to determine the rocks' essential characteristics such as primary and secondary wave velocities. Quality indexes (IQ) of the studied samples were determined based on P-wave velocities of them and their composing minerals and the samples were classified as non-fissured to moderately fissured rocks. Also, all tested samples are classified as slightly fissured rocks according to the ratio of S-wave to P-wave velocities.

A Study on the Recent Sediments of Han River -Grain Size, Heavy Minerals and Trace Elements- (한강유역(漢江流域)의 현생퇴적물(現生堆積物)에 관한 연구(硏究) -입도(粒度), 중광물(重鑛物) 및 유용원소(有用元素)를 중심(中心)으로-)

  • So, Chil Sup;Lee, Ki Hyung
    • Economic and Environmental Geology
    • /
    • v.7 no.3
    • /
    • pp.87-100
    • /
    • 1974
  • This paper deals with grain size analysis, heavy mineral analysis and trace element analysis of the recent sediments of Han River basin between Cheongpyong, Gyeonggi province and Seoul. For each location the samples are taken at river shoreline, river berm and river dune. The size analysis discloses that the mean values range from $-1.37{\phi}$ to $-1.60{\phi}$, sorting values range from 0.25 to 1.84, skewness values range from -0.44 to 0.51 and kurtosis values range from -0.1 to 1.75. Based on the textural parameters, the dune sand can be distinguished from the shoreline-berm sand. The content of heavy minerals of each sample ranges from 0.04 to 4.7%. The principal heavy minerals are ilmenite, magnetite, leucoxene, garnet, amphibole, pyroxene, kyanite, zircon, monazite, tourmaline, epidote, limonite, and minor minerals are apatite, sillimanite, andalusite and olivine. In general, dune sand samples contain more heavy minerals than the samples of shoreline or berm sand. This suggests that the heavy mineral concentration is affected by wind action more than by any other causes. The content of ilmenite and leucoxene decreases, whereas the content of zircon and epidote increases as it approaches the downstream region. The differences result from the variance of geological occurrences. The emission spectrochemical analysis and colorimetry analysis revealed that the content of Ni and V in the heavy minerals of the study area are higher than those of other stream sediments in Korea. On the other hand the content of Cu, Ph, Zn, Mo, W, P, Mn, Cr, Ag and Sn are lower in the study area. It has been observed also that the contents of all the elements except for Bi are higher in this area than the samples of marine sediments of Yellow Sea.

  • PDF

Poly-metamorphism of Pre-Cambrian to Paleozoic metasedimentry rocks in Janggunbong area, Korea-Crustal evolution and environmental geology of the central part of the North Sobaegsan Massif, Korea- (장군봉 일대 선캠브라아대.고생대 변성퇴적암류의 다변성작용-북부 소백산육괴의 중앙부 지역의 지각진화와 환경지질-)

  • 김기영;김형식;오창환;박찬수;강지훈;류영복
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.168-187
    • /
    • 1996
  • In the study area Uanggunbong-Samgunri area), Precambrian metamorphic complex, (Taebacksan gneiss complex, Hyundong gneiss complex, and Taebacksan schist complex) had undergone three different regional metamorphisms at least before Paleozoic. The Paleozoic sediments in the study area also had undergone three different metamorphisms at least. The first is low pressure type regional metamorphism, the second is low pressure type contact metamorphism due to the intrusion of Chunyang granite, and the last is medium pressure type metamorphism caused by thrust in south of Janggunbong area. The first metamorphism formed the prevailing metamorphic zones in the Paleozoic metasediments and the metamorphic grade of the first regional metamorphism increases from the chloritoid zone, through the staurolite zone, garnet zone, staurolite+biotite zone, and to the andalusite+biotite zone. The second metamorphism affected both Pre-Cambrian and Paleozoic metasediments located close to the Chunyang granite. The effect of the contact metamorphism is restricted to the very narrow zone around the granite. The third metamorphism that produced kyanite, is restricted to the very narrow region near the thrust fault in the south of Janggunbong with an E-W trend.

  • PDF

Petrographic Study of Mn-bearing Gondite (Birimian) of Téra Area in the Leo-Man Shield (West African Craton) in Niger.

  • Hamidou GARBA SALEY;Moussa KONATE;Olugbenga Akindeji OKUNLOLA
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.25-39
    • /
    • 2024
  • The Téra manganese deposit represents the most significant manganese mineralization discovered in Niger up today. The main host rocks of this ore are gondites, which are a garnet and quartz rich metamorphic rocks. The supergene weathering developed an alteration profile on these gondites. This study aims to identify the mineralogical composition of gondites and associated rocks, in order to highlight the origine of rocks and the manganese enrichment. The methodological approach adopted involved a field study followed by polarizing microscopic analysis using transmitted and reflected lights. Additionally, quantitative X-ray diffraction (XRD) analysis was performed to assess the manganese ore minerals present in the gondite and associated rocks, including mica schists, amphibolites, and quartzites. The petrographic study revealed a paragenesis characterized by the presence of kyanite, staurolites, garnets and plagioclases that are generally poikiloblasts with quartz and opaque minerals inclusions, emphasizing the internal schistosity which is planar, helicitic or microfolded. These features indicate a prograde metamorphism until high-pressure amphibolite facies conditions. These conditions are followed by greenschist facies conditions marked by calcite, epidote, muscovite, chlorite and muscovite assemblage which emphasizes the vertical tectonics. Depending on the alteration process, the manganese ore exhibit a granular texture at the bottom of the gondite hills, transitioning to a colloform texture towards the top, passing through the epigenization and replacement texture. The XRD analysis further revealed that the studied rocks originated from a volcano-sedimentary complex, characterized by alternating marly, arenaceous and pelitic sequences associated with submarine exhalations.

Heavy Mineral Analysis of the Cretaceous Hayang Group Sandstones, Northeastern Gyeongsang Basin (경상분지 북동부 백악기 하양층군 사암의 중광물분석)

  • 이용태;신영식;김상욱;이윤종;고인석
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.14-23
    • /
    • 1999
  • The northeastern part of the Gyeongsang Basin is widely covered by the Cretaceous Hayang Group (Aptian to Albian). The Hayang Group consists of the IIjig. Hupyeongdong, Jeomgog, and Sagog formations. Heavy mineral analysis was carried out to define the possible source rocks of the Haynag Group snadstones. Heavy minerals separated from IIjig, Hupyeongdong, and Jeomgog sandstones are hematite, ilmenite, leucoxene, magnetite, pyrite, actinolite, andalusite, apatite, biotite, chlorite, epidote, garnet, hornblende, kyanite, monazite, muscovite, rutile, sphene, spinel, staurolite, tourmaline, and zircon. Based on their close association and sensitiveness, the heavy mineral assemblages can be classified into 6 syutes: 1)apatite-green tourmaline-sphene-colorless/yellowish zircon; 2) colorless garnet-epidote-rutile-brown tourmaline; 3) rounded purple zircon-rounded tourmaline-rounded rutile; 4) augite-hornblende-color- less zircon; 5) epidote-garnet-sphene; and 6) blue tourmaline. The possible source rocks corresponding to each assemblage are 1) granitic rocks; 2) metamorphic rocks (schist and gneiss) ; 3) older sedimentary rocks; 4) andesitic rocks; 5) metamorphosed impure limestone; and 6) pegmatite, respectively. Previous paleocurrent data suggest that the sediments of the study area were mainly derived from the northeastern to southeastern directions. Thus, the most possible source areas would be the east extension part of the sobaegsan metamorphic complex to the northeast and the Cheongsong Ridge to the southeast.

  • PDF

SHRIMP U-Pb Ages of Detrital Zircons from Metasedimentary Rocks in the Yeongheung-Seonjae-Daebu Islands, Northwestern Gyeonggi Massif (경기육괴 북서부 영흥도-선재도-대부도에 분포하는 변성퇴적암 내 쇄설성 저어콘의 SHRIMP U-Pb 연대)

  • Na, Jun-Seok;Kim, Yoon-Sup;Cho, Moon-Sup;Yi, Kee-Wook
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.31-45
    • /
    • 2012
  • We investigated the various lithologies and zircon U-Pb ages of metasedimentary rocks from the Yeongheung-Seonjae-Daebu Islands, western Gyeonggi Massif, whose geologic and geochronologic features are poorly constrained in spite of their significance for tectonic interpretation. Major lithology consists of quartzites or meta-sandstones commonly alternating with semi-pelitic schists, together with lesser amounts of calcareous sandstones with matrix-supported quartzite clasts, calcareous schists, and pelitic schists. Pelitic schists uncommonly contain large porphyroblasts of garnet as well as quartz veins with large crystals of muscovite and andalusite or kyanite. SHRIMP U-Pb ages of detrital zircons from two analyzed metasandstones define four age populations: Neoarchean (~2.5 Ga), Paleoproterozoic (~2.0-1.5 Ga), Neoproterozoic (~1.1-0.7 Ga), and Early Paleozoic (~560-400 Ma). The youngest zircon ages are clustered at ~420 Ma. These results suggest that the deposition of meta-sandstones took place after the Silurian, possibly during the Devonian, and are analogous to those of the Taean Formation reported from the western part of the Gyeonggi Massif. Moreover, The age distribution patterns of detrital zircons and the Barrovian-type metamorphic facies of pelitic schists are similar to those reported from the Imjingang belt, suggesting that the Taean Formation likely corresponds to southwestward extension of the Imjingang Belt.

A Computational Mineralogy Study of the Crystal Structure and Stability of Aluminum Silicate (Al2SiO5) Minerals (알루미늄 규산염(Al2SiO5) 광물의 결정구조와 안정성에 대한 계산광물학 연구)

  • Kim, Juhyeok;Son, Sangbo;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.13-22
    • /
    • 2018
  • Aluminum silicates ($Al_2SiO_5$) undergo phase transitions among kyanite, andalusite, and sillimanite depending on temperature and pressure conditions. The minerals are often used as an important indicator of the degree of metamorphism for certain metamorphic rocks. In this study, we have applied classical molecular dynamics (MD) simulations and density functional theory (DFT) to the aluminum silicates. We examined the crystal structures as a function of applied pressure and the corresponding stabilities based on calculated enthalpies at each pressure. In terms of the lattice parameters, both methods showed that the volume decreases as the pressure increases as observed in the experiment. In particular, DFT results differed from experimental results by much less than 1%. As to the relative stability, however, both methods showed different levels of accuracy. In the MD simulations, a transition pressure at which the relative stability between two minerals reverse could not be determined because the enthalpies were insensitive to the applied pressure. On the other hand, in DFT calculations, the relative stability relation among the three minerals was consistent with experiment, although the transition pressure was strongly dependent on the choice of the electronic exchange-correlation functional.