• Title/Summary/Keyword: kraft pulps

Search Result 46, Processing Time 0.022 seconds

Studies on the Pulping Characteristics of Larchwood (Larix leptolepis Gordon) by Alkaline Process with Additives (첨가제(添加劑) 알칼리 법(法)에 의한 일본 잎갈 나무의 펄프화(化) 특성(特性)에 관(關)한 연구(硏究))

  • Lim, Kie-Pyo;Shin, Dong-Sho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.3-30
    • /
    • 1979
  • Larch ($\underline{Larix}$ $\underline{leptolepis}$ GORDON), one of the major afforestation species in Korea in view of its growing stock and rate of growth, is not favored as a raw material for pulp due to its low yield of pulp and difficulties with bleaching arising from the high content of extractives in wood, and the high heartwood ratio and the active phenolics, respectively. The purpose of this study is to investigate the characteristics of firstly pulping with various additives of cellulose protector for the yield of pulp, and secondly bleaching with oxygen for chlotination-alkali extraction of five stage-sequence to reduce chlorine compounds in bleaching effluents. The kraft cooking liquor for five age groups of larchwood was 18 percent active alkali with 25 percent sulfidity and 5 : 1 liquor-to-wood ratio, and each soda liquor for sap-and heart-wood of the 15-year-old larchwood was 18 percent alkali having one of the following cellulose protectors as the additive; magnesium sulfate ($MgSO_4$, 2.5%), zinc sulfate ($ZnSO_4$, 2.5%), aluminium sulfate ($Al_2(SO_4)_3$, 2.5%), potasium iodide (KI, 2.5%), hydroquinone (HQ, 2.5%), anthraquinone (AQ, 0.1%) and ethylene diamine (EDA, 2.5%). Then each anthraquinone-soda liquor for the determination of suitable cooking condition was the active alkali level of 15, 17 and 19 percent with 1.0, 0.5 and 0.1 percent anthraquinone, respectively. The cooking procedure for the pulps was scheduled to heat to 170$^{\circ}C$ in 90 minutes and to cook 90 minutes at the maximum temperature. The anthraquinone-soda pulps from both heartwood and sapwood of 15-year-old larchwood prepared with 0.5 percent anthraquinone and 18 percent active alkali were bleached in a four-stage sequency of OCED. (O: oxygen bleaching, D: chlorine dioxide bleaching and E: alkali extraction). In the first stage oxygen in atmospheric pressure was applied to a 30 percent consistency of pulp with 0.1 percent magnesium oxide (MgO) and 3, 6, and 9 percent sodium hydroxide on oven dry base, and the bleached results were compared pulps bleached under the conventional CEDED (C: chlorination). The results in the study were summarized as follows: 1. The screened yield of larch kraft pulp did not differ from particular ages to age group, but heartwood ratio, basic density, fiber length and water-extractives contents of wood and the tear factor of the pulp increased with increasing the tree age. The total yield of the pulp decreased. 2. The yield of soda pulp with various chemicals for cellulose protection of the 15-year-old larchwood increased slightly more than that of pure soda pulp and was slightly lower than that of kraft pulp. The influence of cellulose protectors was similar to the yield of pulps from both sapwood and heartwood. The effective protectors among seven additives were KI, $MgSO_4$ and AQ, for which the yields of screened pulp was as high as that of kraft pulp. Considering the additive level of protector, the AQ was the most effective in improving the yield and the quality of pulp. 3. When the amount of AQ increased in soda cooking, the yield and the quality of the pulp increased but rejects in total yield increased with decreasing the amount of active alkali from 19 to 15 percent. The best proportion of the AQ seemed to be 0.5 percent at 17 percent active alkali in anthraquinone-soda pulping. 4. On the bleaching of the AQ-soda pulp at 30 percent consistency with oxygen of atomospheric pressure in the first stage of the ODED sequence, the more caustic soda added, the brighter bleached pulp was obtained, but more lignin-selective bleaching reagent in proportion to the oxygen was necessary to maintain the increased yield with the addition of anthraquinone. 5. In conclusion, the suitable pulping condition for larchwood to improve the yield and quality of the chemical pulp to the level for kraft pulp from conventional process seemed to be. A) the selection of young larchwood to prevent decreasing in yield and quality due to the accumulation extractives in old wood, B) the application of 0.5 percent anthraquinone to the conventional soda cooking of 18 percent active alkali, and followed, C) the bleaching of oxygen in atmospheric pressure on high consistency (30%) with 0.1 percent magnesium oxide in the first stage of the ODED sequence to reduce the content of chlorine compounds in effluent.

  • PDF

Development of Multi-functional Mulch Papers and Evaluation of Their Performance-Studies for Reducing the Basis Weight of Mulch Paper- (다기능성 멀칭지의 개발 및 적용성 평가(제l보)-멀칭지의 저평량화를 위한 연구-)

  • Lee, Hak-Lae;Ryu, Jung-Yong;Youn, Hye-Jung;Joo, Sung-Bum;Park. Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.3
    • /
    • pp.38-45
    • /
    • 1998
  • Soil and water contamination caused by the abundant use of agricultural chemicals including herbicides and fertilizers draws public concerns since these chemicals may pollute the agricultural lands as well as the food products grown on these lands. As a method to reduce the use of agricultural chemicals mulching with thin plastic film has been commonly practised for many years. Although use of the plastic film for mulching is very effective in preventing the growth of weed, it is almost impossible to remove all of the plastic film from the agricultural land and the remaining film eventually contaminates the soils. Therefore, it is very imperative to develop a mulching material that decomposes completely to prevent soil pollution problems and to enhance the competitive edge of domestic agriculture. Mulch papers are believed to have many positive characteristics in preventing problems caused by the plastic mulch film since it decomposes completely after use. However, the basis weight of mulch papers needs to be reduced to improve its handling properties and to reduce the raw material costs of pulps. In this paper the possibilities of using domestic old corrugated containers in producing mulch papers were examined. Also use of unbleached softwood kraft pulps and dry strength additives were exploited along with two-layered sheet forming technology in decreasing the basis weight of the mulch paper. Results showed that reduction of 20g/$m^2$ of basis weight of mulch paper was possible by the appropriate raw material selection and application of strength resin. To use the mulch papers in paddy fields, however, further research to improve its durability should be pursued.

  • PDF

Manufacture of Printing and Writing Papers from Old Corrugated Containers (OCC) (Old Corrugated Containers (OCC)로부터 인쇄·필기용지 제조)

  • Lee, Goo;Ahn, Byoung-Jun;Paik, Ki-Hyon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.367-373
    • /
    • 1999
  • Increasing consumer demand for recycle of most paper products is challenging manufacturers to use lower value raw materials while maintaining high quality. This study was carried out to investigate the composition of old corrugated containers (OCC) and to manufacture printing and writing papers of over 85% (ISO) brightness by ECF and TCF bleaching from OCC. Fiber length of American old corrugated container (AOCC) was longer than that of Korean old corrugated container (KOCC) in fiber length. The former was composed of unbleached kraft pulp (UKP) of about 80 percentage, the latter about 20 percentage. OCC is feasible for manufacturing of pulps i.e., AOCC is for printing and writing papers and KOCC is for whiteboards, in the aspects of brightness and mechanical properties on the other hand, the cost of manufacturing upgraded papers by OCC is high because of bleaching chemicals. Neverthless, considering various aspects, especially environment, there are many advantages in recycling. In case of the treated AOCC pulp, over 85% (ISO) brightness can be achieved through TCF or ECF bleaching step, while the treated KOCC pulp did not allow high brightness through TCF bleaching. The tensile index of the bleached KOCC pulp was lower than that of the bleached AOCC pulp, but the burst and tear index of KOCC was higher than that of AOCC.

  • PDF

Pulping Features of Blue-stained and Fungicide-treated Woods (청변균 및 살균제처리재의 펄프화특성)

  • Cho, Nam-Seok;Jeong, Seon-Hwa
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.66-73
    • /
    • 2005
  • This study was performed to understand the changes in wood extractives, mainly acetone extracts, in pine woods (Pinus densiflora and Pinus rigida) treated by three blue stain fungi (BSF) such as native BSF in Korea, Leptographium sp., screened Albino strain(BSFcs-1) and commercial Cartapip and fungicide, Wood guard. In addition their pulping and bleaching properties were investigated. BSF treatment has significantly reduced acetone extracts, $25.1{\sim}30.4%$ decreasing in red pine and $22.9{\sim}28.1%$ in pitch pine. Three week aging treatment showed about 20% decreasing in red pine and 19.3% in pitch pine. There were not so significant differences in extracts reduction among native BSF and Albino-type strains (Albino strain, BSFcs-1, and commercial Cartapip). But fungicide, Wood guard, treated wood showed relatively lower decreasing rates of extractives, 14% in red pine and 10.1% in pitch pine. Therefore it is understandable that the fungicide could protect the wood from blue stain fungi attack, but has no effect on its extractive reduction. Concerned to pulping properties of BSF and fungicide treated woods, red pine and pitch pine, optimum pulping condition was 20% active alkali, wood to liquor ratio 1 to 6, $170^{\circ}C$, and 2.5 hr. In the case of BSF woods, optimum pulping condition was same as the sound wood, $43.5{\sim}45%$ of pulp yields and $1.3{\sim}1.45%$ of rejects. Screened pulp yield of fungicide treated wood was lower than those of BSF treated woods. Rejects in pulps were higher in fungicide-treated wood than BSF treated woods. Bleaching pulp yields were ranged of 92 to 93.5%. BSF, Cartapip and fungicide treated woods resulted in lower brightness of $55{\sim}58%$, but Albino-type strain(BSFcs-1) $61.3{\sim}62.3%$, very similar to untreated one. Therefore bleaching chemicals could be saved in the processing of chemical pulping.

Production and Location of Xylanolytic Enzymes in Alkaliphilic Bacillus sp. K-1

  • Lee Yun-Sik;Ratanakhanokchai Khanok;Piyatheerawong Weela;Kyu Khin-Lay;Rho Min-Suk;Kim Yong-Seok;Om Aeson;Lee Joo-Won;Jhee Ok-Hwa;Chon Gil-Hyung;Park Hyun;Kang Ju-Seop
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.921-926
    • /
    • 2006
  • The production and location of xylanolytic enzymes in alkaliphilic Bacillus sp. K-1, isolated from the wastewater treatment plant of the pulp and paper industry, was studied. When grown in alkaline xylan medium, the bacteria produced xylanolytic enzymes such as xylanase, $\beta$-xylosidase, arabinofuranosidase, and acetyl esterase. Two types of xylanases (23 and 45 kDa) were found to be extracellular, but another type of xylanase (35 and/or 40 kDa) was detected as pellet-bound that was eluted with 2% triethylamine from the residual xylan of the culture. The xylanases were different in their molecular weight and xylan-binding ability. Arabinofuranosidase and $\beta$-xylosidase were found to be intracellular and extracellular, respectively, and acetyl esterase was found to be extracellular. The extracellular xylanolytic enzymes effectively hydrolyzed insoluble xylan, lignocellulosic materials, and xylans in kraft pulps.

Alkaliphilic Endoxylanase from Lignocellulolytic Microbial Consortium Metagenome for Biobleaching of Eucalyptus Pulp

  • Weerachavangkul, Chawannapak;Laothanachareon, Thanaporn;Boonyapakron, Katewadee;Wongwilaiwalin, Sarunyou;Nimchua, Thidarat;Eurwilaichitr, Lily;Pootanakit, Kusol;Igarashi, Yasuo;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1636-1643
    • /
    • 2012
  • Enzymatic pre-bleaching by modification of pulp fibers with xylanases is an attractive approach to reduce the consumption of toxic bleaching chemicals in the paper industry. In this study, an alkaliphilic endoxylanase gene was isolated from metagenomic DNA of a structurally stable thermophilic lignocellulose-degrading microbial consortium using amplification with conserved glycosyl hydrolase family 10 primers and subsequent genome walking. The full-length xylanase showed 78% sequence identity to an endo-${\beta}$-1,4-xylanase of Clostridium phytofermentans and was expressed in a mature form with an N-terminal His6 tag fusion in Escherichia coli. The recombinant xylanase Xyn3F was thermotolerant and alkaliphilic, working optimally at $65-70^{\circ}C$ with an optimal pH at 9-10 and retaining >80% activity at pH 9, $60^{\circ}C$ for 1 h. Xyn3F showed a $V_{max}$ of 2,327 IU/mg and $K_m$ of 3.5 mg/ml on birchwood xylan. Pre-bleaching of industrial eucalyptus pulp with no prior pH adjustment (pH 9) using Xyn3F at 50 IU/g dried pulp led to 4.5-5.1% increase in final pulp brightness and 90.4-102.4% increase in whiteness after a single-step hypochlorite bleaching over the untreated pulp, which allowed at least 20% decrease in hypochlorite consumption to achieve the same final bleaching indices. The alkaliphilic xylanase is promising for application in an environmentally friendly bleaching step of kraft and soda pulps with no requirement for pH adjustment, leading to improved economic feasibility of the process.