Browse > Article

Production and Location of Xylanolytic Enzymes in Alkaliphilic Bacillus sp. K-1  

Lee Yun-Sik (Department of Endocrinology, University of Pennsylvania School of Medicine)
Ratanakhanokchai Khanok (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
Piyatheerawong Weela (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
Kyu Khin-Lay (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
Rho Min-Suk (Department of Applied Biochemistry, Konkuk University)
Kim Yong-Seok (Department of Biochemistry, College of Medicine, Hanyang University)
Om Aeson (Department of Food Science and Nutrition, College of Human Ecology, Hanyang University)
Lee Joo-Won (Department of Pharmacology, College of Medicine, Hanyang University)
Jhee Ok-Hwa (Department of Food Science and Nutrition, College of Human Ecology, Hanyang University)
Chon Gil-Hyung (Department of Infection Biology, College of Medicine, Wonkwang University)
Park Hyun (Department of Infection Biology, College of Medicine, Wonkwang University)
Kang Ju-Seop (Department of Pharmacology, College of Medicine, Hanyang University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.6, 2006 , pp. 921-926 More about this Journal
Abstract
The production and location of xylanolytic enzymes in alkaliphilic Bacillus sp. K-1, isolated from the wastewater treatment plant of the pulp and paper industry, was studied. When grown in alkaline xylan medium, the bacteria produced xylanolytic enzymes such as xylanase, $\beta$-xylosidase, arabinofuranosidase, and acetyl esterase. Two types of xylanases (23 and 45 kDa) were found to be extracellular, but another type of xylanase (35 and/or 40 kDa) was detected as pellet-bound that was eluted with 2% triethylamine from the residual xylan of the culture. The xylanases were different in their molecular weight and xylan-binding ability. Arabinofuranosidase and $\beta$-xylosidase were found to be intracellular and extracellular, respectively, and acetyl esterase was found to be extracellular. The extracellular xylanolytic enzymes effectively hydrolyzed insoluble xylan, lignocellulosic materials, and xylans in kraft pulps.
Keywords
Xylanolytic enzymes; alkaliphilic Bacillus sp. K-1; extracellular; pellet-bound and intracellular fractions;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Berg, B., B. V. Hofstan, and G. Petterson. 1972. Growth and cellulase formation by Cellvibrio fulvus. J. Appl. Bacteriol. 35: 201-214   DOI
2 Ratanakhanokchai, K., K. L. Kyu, and M. Tanticharoen. 1999. Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65: 694-697
3 Biely, P., M. Vrsanska, and Z. Kratki. 1980. Xylandegrading enzymes of the yeast Cryptococcus albidus. Identification and cellular localization. Eur. J. Biochem. 108: 313-321   DOI   ScienceOn
4 Klier, A. F. and G. Rapoport. 1988. Genetic and regulation of carbohydrate catabolism in Bacillus. Annu. Rev. Microbiol. 42: 65-95   DOI   ScienceOn
5 Kaneko, S., T. Shimasaki, and I. Kusakabe. 1993. Purification and some properties of intracellular ${\alpha}$-L-arabinofuranosidase from Aspergillus niger 5-16. Biosci. Biotech. Biochem. 57: 1161-1165   DOI   ScienceOn
6 Wong, K. K. Y., L. U. L. Tan, and J. N. Saddler. 1988. Multiplicity of ${\beta}$-1,4-xylanase in microorganisms: Functions and applications. Microbiol. Rev. 52: 305-317
7 Yamani, K., T. Yoshikawa, H. Suzuki, and K. Nisizawa. 1971. Localization of cellulase components in Pseudomonas fluorescens var. cellulosa. J. Biochem. 69: 771-778   DOI
8 Dekker, R. F. H. and G. N. Richards. 1975. Purification, properties and mode of action of hemicellulase I produced by Ceratoxis paradoxa. Carbohyr. Res. 42: 107-123   DOI   ScienceOn
9 Gilkes, N. R., B. Henrissat, D. G. Kilburn, R. C. Miller, Jr., and R. A. J. Warren. 1991. Domains in microbial ${\beta}$-1,4-glycanases: Sequence conservation, function and enzyme families. Microbiol. Rev. 55: 303-315
10 Mackenzie, C. R., D. Bilous, H. Schneider, and K. G. Johnson. 1987. Induction of cellulolytic and xylanolytic enzyme systems in Streptomyces spp. Appl. Environ. Microbiol. 53: 2835-2839
11 Kowit, J. D., W. Choy, S. P. Champe, and A. L. Goldberg. 1976. Role and location of protease I from Escherichia coli. J. Bacteriol. 128: 776-782
12 Biely, P., J. Puls, and H. Schneider. 1985. Acetyl xylan esterase in fungal cellulolytic systems. FEBS Lett. 186: 80-84   DOI   ScienceOn
13 Black, G. W., G. P. Hazlewood, S. J. Millward-Sadler, J. I. Laurie, and H. J. Gilbert. 1995. A modular xylanase containing a novel non-catalytic xylan-specific binding domain. Biochem. J. 307: 191-195   DOI
14 Somogyi, M. 1952. Notes in sugar determination. J. Biol. Chem. 195: 265-275
15 Tsujibo, H., T. Ohtsuki, T. Ilo, L. Yamazaki, K. Miyamoto, M. Sugiyama, and Y. Inamori. 1997. Cloning and sequence analysis of genes encoding xylanases and acetyl xylan esterase from Streptomyces thermoviolaceus OPC-520. Appl. Environ. Microbiol. 63: 661-664
16 Hall, J., G. W. Black, L. M. A. Ferreira, S. J. Millward- Sadler, and B. R. S. Ali. 1995. The non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of avicel. Biochem. J. 309: 749-756   DOI
17 Lee, Y. E., S. E. Lowe, and G. Zeikus. 1993. Regulation and characterization of xylanolytic enzymes of Thermoanaerobacterium saccharolyticum B6A-RI. Appl. Environ. Microbiol. 59: 763-771
18 Ratanakhanokchai, K. and K. L. Kyu. 1997. Cellulosome structure of thermophilic cellulolytic and alkaliphilic xylanolytic bacterium which produced specific xylan-binding xylanase, p. 10. In abstract of the Seminar of JSPS-NRCT/DOST/LIPI/ VCC Large-scale Cooperative Research in the Field of Biotechnology, at Suranaree University of Technology, Nakhon Ratchasima, Thailand, JSPS-I-A-4
19 Kyu, K. L., K. Ratanakhanokchai, D. Uttapap, and M. Tanticharoen. 1994. Induction of xylanase in Bacillus circulans $B_6$. Bioresource Technol. 48: 163-167   DOI   ScienceOn
20 Irwin, D., E. D. Jung, and D. B. Wilson. 1994. Characterization and sequence of a Thermomonospora fusca. Appl. Environ. Microbiol. 60: 763-770
21 Royer, J. C. and J. P. Nakas 1989. Xylanase production by Trichoderma longibrachiatum. Enzyme Microbiol. Technol. 11: 405-410   DOI   ScienceOn
22 Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275
23 Karita, S., K. Sakka, and K. Ohmiya. 1996. Cellulosebinding domains confer an enhanced activity against insoluble cellulose to Ruminococcus albus endoglucanase IV. J. Ferment. Bioeng. 81: 553-556   DOI   ScienceOn
24 Sun, J. L., K. Sakka, S. Karita, T. Kimura, and K. Ohmiya. 1998. Adsorption of Clostridium stercorarium xylanase A to insoluble xylan and the importance of the CBD to xylan hydrolysis. J. Ferment. Bioeng. 85: 63-68   DOI   ScienceOn
25 Busto, M. D., N. Ortega, and M. Perez-Mateos. 1996. Location, kinetics and stability of cellulases induced in Trichoderma reesei cultures. Bioresource Technol. 57: 187-192   DOI   ScienceOn
26 Lee, J. J., K. S. Hahm, K. Y. Lee, and S. T. Lee. 1997. Characterization of an endoxylanase produced by an isolated strain of Bacillus sp. J. Microbiol. Biotechnol. 7: 114-120
27 Millward-Sadler, S. J., D. M. Poole, B. Henrissat, G. P. Hazlewood, J. H. Clarke, and H. J. Gilbert. 1994. Evidence for a general role for high-affinity non-catalytic cellulose binding domains in microbial plant cell wall hydrolases. Molec. Microbiol. 11: 375-382   DOI   ScienceOn
28 Reese, E. T. 1997. Degradation of polymeric carbohydrates by microbial enzymes. Recent Adv. Phytochem. 11: 311-365
29 Salusbury, T. 1989. Methods of tissue and cell disruption, pp. 90-95. In E. L. V. Harris and S. Angal (eds.), Protein Purification Methods. IRL Press, Oxford
30 Viikari, L., A. Kantelinen, J. Sundquist, and M. Linko. 1994. Xylanases in bleaching: From an idea to the industry. FEMS Microbiol. Rev. 13: 335-350   DOI
31 Stoppok, W., P. Rapp, and F. Wagner. 1982. Formation, location and regulation of endo-1, 4-${\beta}$-glucanases and ${\beta}$-glucosidases from Cellulomonas uda. Appl. Environ. Microbiol. 44: 44-53
32 Liu, X. M., M. Qi, J. Q. Lin, Z. H. Wu, and Y. B. Qu. 2001. Asparagine residue at position 71 is responsible for alkalitolerance of the xylanase from Bacillus pumis A-30. J. Microbiol. Biotechnol. 11: 534-538   과학기술학회마을