최근 국내 기관 투자자들을 중심으로 전통적 투자대상으로부터의 수익이 하락추세에 있어 기관 투자자들이 적극적 자산운용을 기피할 경우, 장기적으로 안정적 수익보장을 유지하기 어렵다는 우려가 제기되었다. 이에 보유자산 구성을 조정한 수익성 개선전략의 요구가 증대되고 있으며, 일부 기관 투자자들은 헤지펀드를 기존 포트폴리오에 편입시킴으로써 운용수익률을 제고하려는 움직임을 보이고 있다. 본 연구에서는 시스템트레이딩을 이용하여 선물시장에서 거래확률 조정을 통한 헤지펀드 투자전략을 제시하고자 한다. 선물시장에서 사용되는 다양한 기술적 지표를 이용하여 연관성 규칙(association rule)을 생성하고 이를 거래규칙(trading rule)으로 전환하여 투자전략으로 활용한다. 한편 연관성 규칙은 기술적 지표의 개수와 개별 지표들의 구간값의 조합으로 생성되며, 조합에 따라 거래확률을 조정함으로써 위험관리가 가능한 투자전략을 수립하는데 사용된다. 제시된 전략의 우수성을 입증하기 위해 KOSPI 200 연결선물데이터를 이용하여 수익성 분석을 수행하였으며, 분석결과 제시된 투자전략이 투자위험관리에 효과적임을 보였다.
본 논문은 주식 매매 시스템을 위한 강화 학습 구조를 제시한다. 매매 시스템에 사용되는 매개변수들은 Q-학습 알고리즘에 의하여 최적화되고, 인공 신경망이 값의 근사치를 구하기 위하여 활용된다 이 구조에서는 서로 유기적으로 협업하는 다중 에이전트를 이용하여 전역적인 추세 예측과 부분적인 매매 전략을 통합하여 개선된 매매 성능을 가능하게 한다. 에이전트들은 서로 통신하여 훈련 에피소드와 학습된 정책을 서로 공유하는데, 이 때 전통적인 Q-학습의 모든 골격을 유지한다. 실험을 통하여, KOSPI 200에서는 제안된 구조에 기반 한 매매 시스템을 통하여 시장 평균 수익률을 상회하며 동시에 상당한 이익을 창출하는 것을 확인하였다. 게다가 위험 관리의 측면에서도 본 시스템은 교사 학습(supervised teaming)에 의하여 훈련된 시스템에 비하여 더 뛰어난 성능을 보여주었다.
인터넷 게시판이나 트위터 같은 온라인 매체는 쉬운 접근성과 실시간 특성으로 어떤 사건에 대한 사용자들의 반응이 즉각적으로 나타난다. 또한, 실시간으로 엄청난 양의 데이터가 생성되고 있어 이 데이터를 잘 분석한다면 실제 사회에서 나타나는 다양한 현상들에 대해 파악할 수 있다. 최근 주식 시장에서도 이러한 온라인 데이터들을 분석하여 주가 변동이나 주식 시장 상황을 이해하려는 연구가 시도되고 있다. 이 논문에서는 주식 토론방의 게시물과 주가 사이에 어떤 상관관계가 있는지를 분석하고, 이를 이용한 주식 투자 종목 추천 시스템을 제안하고자 한다. 먼저 주가와 주식 토론방 게시물들 사이의 상관관계를 분석하기 위해서 KOSPI200에 속한 회사 중 55개의 회사를 대상으로 주가와 주식 토론방 게시물을 분석하였다. 2008년부터 2013년까지 6년 동안 각 회사의 주가와 게시물의 상관관계를 분석한 결과 개별 주가와 게시물 수 사이에는 특별한 상관관계가 나타나지 않았다. 하지만 주가와 게시물 수의 상관관계가 높을수록 주식 수익률이 높은 경향을 보였다. 이 논문에서는 주가와 게시물 수의 상관관계 정보를 이용한 투자 종목 추천 알고리즘을 제안하였고, 모의투자 실험을 통해 제안 방법의 효율성을 보였다. 2008년 1월부터 2013년 12월까지의 주가와 주식 토론방 데이터를 이용한 모의투자 실험에서 제안 방법으로 구성한 포트폴리오의 1개월 평균 수익률은 약 1.82%로, 주식 네트워크 특성을 이용한 기존 방법보다 약 0.64% 높은 수익률을 보였다. 또한, 마코위츠의 효율적 포트폴리오와 KOSPI200 수익률보다 각각 약 0.85%와 1.48% 높게 나타났다.
본 연구의 목적은 IT 전략그리드의 4개 전략 모드에 대해서 IT 거버넌스 의사결정 구조를 살펴보고, 높은 성과를 내는 기업과 낮은 성과를 내는 기업 간의 IT 거버넌스 의사결정 구조의 차이를 비교 및 분석하는 것이다. 본 연구를 위해 설문방법을 이용하였고, 분석을 위한 데이터는 KOSDAQ 300, KOSPI 200의 상장 기업을 대상으로 수집한 총 209개의 데이터를 적용하였다. 그 결과, 각 모드는 서로 상이한 IT 거버넌스 의사결정 구조를 가지는 것으로 나타났고, 높은 성과를 내는 기업과 낮은 성과를 내는 기업 간의 IT 거버넌스 의사결정 구조도 각 모드별로 상이한 결과를 보였다. 본 논문의 결과는 IT 거버넌스를 실행하는 기업들의 바람직한 행위를 촉진하기 위한 의사결정구조의 틀을 각 전략 모드별로 제시하였다는 점에서 의의가 있다.
변동성을 측정하는 데에는 주로 종가기반(close-to-close)의 수익률 자료를 이용하여 이루어지고 있지만, 일중 변동폭을 나타내는 가격범위에 관한 정보인 고가와 저가를 포함한 범위변동성에 대한 연구가 최근 활발해지고 있다. 본 연구는 범위 변동성에 대한 개념이 생긴 이후 최근 확장되고 있는 다양한 연구주제와 더불어 범위변동성을 실무적으로 활용하기 위한 것으로 범위변동성 예측에 있어 적절한 예측기간을 제시하는 것을 목적으로 하고 있다. 범위변동성은 Parkinson(1980; PK), Garman and Klass(1980; GK) Rogers and Satchell(1991; RS), Yang and Zhang(2008; YZ)이 제시한 추정치를 이용하였으며, AR(1), MA(1)모형을 이용하여 예측된 변동성과 실현변동성간의 예측오차를 비교하는데 이때 예측기간을 시변하여 산출함으로써 예측력을 비교분석하였다. 2000.5.22~2009.9.18(총 2,307일간)의 KOSPI200지수를 대상으로 분석한 결과는 다음과 같다. 첫째, PK, GK, RS, YZ 변동성 중 KOSPI200의 변동성을 가장 잘 예측하는 변동성은 PK변동성 또는 RS변동성으로 보인다. 두 변동성의 예측력 우위는 분석기간에 따라 미세한 차이를 보이는데 금융위기를 포함하는 경우 PK변동성이 우수하며, 포함하지 않는 경우는 RS변동성이 우수한 것으로 나타났다. 둘째, 금융위기를 포함하지 않는 경우 대부분의 경우 예측오차가 크게 줄어드는 것으로 나타나 금융위기처럼 변동성이 크게 나타나는 경우에는 범위변동성을 이용한 변동성예측력이 상당히 떨어질 수 있음을 확인하였다. 셋째, 범위변동성을 이용하여 변동성을 예측하는 경우 AR(1), MA(1)모형의 모수추정기간을 길게 하는 경우 예측오차의 평균은 감소하는 경향이 확인되었다. 특징적인 점은 60일 또는 90일로 기간을 늘일 경우에 예측오차가 급격하게 감소하는 경향을 보이는 것인데, 각각의 변동성과 예측모형에 따라 다소의 차이가 나타난다. 그리고, 예측오차의 편차는 90일 이후 큰 변화를 보이지 않고 있는 것으로 보인다. 따라서, 범위변동성을 이용하여 범위변동성을 예측할 경우 90거래일 이상의 가격 정보를 이용하여 예측을 하는 것이 예측오차를 줄여 예측력을 높일 수 있을 것으로 판단된다.
상장종목 수와 시가총액이 급증하고 있는 ETF 시장을 분석하여 ETF의 투자 효과를 규명함으로써 투자 방안을 제시하는 것이 연구목적이다. 연구 절차와 방법은 2010년~2018년 기간 동안 거래내역과 거래금액, 시가총액 등 표본을 대상으로 ETF 종류별로 수익률 및 변화추이를 산출하였고, 상관관계와 회귀분석을 실시하였다. 연구결과, ETF 전체수익률은 2.11%, 국내기초시장 ETF 수익률은 2.39%, 주식 ETF 수익률은 2.59%로서 코스피 지수와 코스피200 지수상승률 보다 낮아서 투자자들이 기대했던 수익률 보다 낮았으며, 가장 수익률이 높은 ETF는 인덱스 ETF로서 2.63%를 기록하였고, 다음은 주식 ETF, 해외기초시장 ETF 순으로 나타났다. ETF 투자의 문제점은 전체 ETF와 국내기초시장 ETF의 연간수익률이 2%대로 낮아서 투자자들이 기대하는 5%이상의 수익률에는 미흡하였다. 연구기여도는 실제로 달성 가능한 ETF 투자효과를 분석하여 투자유의사항을 정립한 데 있고, 연구방향은 ETF 자료를 더 많이 축적해서 투자방안을 정밀하게 제시하고자 한다.
본 논문에서는 KOSPI 시가총액기준 상위 4종목(삼성전자, 현대차, 현대모비스, POSCO)의 고빈도 거래 데이터를 바탕으로 일중 수익률의 실현변동성과 시장미시구조잡음에 대해 연구한다. Volatility signature plot을 통해 실현변동성(Realized Variance; RV)과 편의수정 실현변동성($RV_{AC_1}$)의 편의를 확인하고 시장미시구조 잡음의 특징을 실증적으로 파악한다. 또한, 잡음 대 신호비(Noise-to-Signal Ratio; NSR)를 사용하여, 평균제곱오차(Mean Square Error; MSE) 기준의 실현변동성(RV)과 편의수정 실현변동성($RV_{AC_1}$)의 최적 추출 빈도수를 추정해본다.
본 연구에서는 여러 계량 모형을 이용하여 계산한 헤지 비율의 성과를 비교하였다. 특히 헤지 비율을 추정하기 위하여 분수 공적분 오차 수정 모형을 이용하였다. KOSPI200 현물과 선물 지수를 이용하여 검증한 결과 현물, 선물 지수는 1차 적분된 시계열이며 베이시스는 분수 적분된 시계열이었다. 따라서 현물과 선물 지수는 분수 공적분된 시계열이었다. 최소 분산 헤지 비율을 최적 헤지 비율로 하여 성과를 측정한 결과 다음과 같은 결과를 얻었다. 헤지 성과는 GARCH 항이 있는 모형이 없는 모형에 비해 크게 나타나며 각 모형에서 고려하고 있는 정보 집합의 크기가 큰 순서인 FIEC, EC, VAR, OLS 순으로 헤지 성과는 크게 나타나고 있다. 그러나 OLS 방법에 의한 헤지에 의해서도 수익률 변동의 많은 부분이 사라져, 다른 모형들은 OLS 모형과 비교하여 추가적인 분산 감소 효과는 크지 않았다.
1997년에 우리 나라는 외환충격으로 인한 금융위기 속에서 시장가격이 급격하게 변동하였다. 이로 인해 차익거래를 가능하게 하는 차입과 대출이 크게 제약되었고, 이것은 시장간 균형관계에 중요한 영향을 줄 수 있다. 이에 이러한 금융위기에서도 주요 시장간의 균형관계가 유지되었는지를 검정하는 것이 이 연구의 목적이다. 분석자료로 KOSPI 200 현물 종가 및 선물 결제가격, 연간 회사채 수익률, 양도성 예금 연간이자율, 기준환율의 일일 자료를 사용하였다. 1996년 5월 3일부터 1998년 5월 21일까지의 기간을 외환충격에 의한 금융위기 전, 중, 후의 3단계로 구분하여 각 단계별로 백터오차수정모형 분석과 충격반응분석을 하였다. 금융위기 이전인 제1단계에서는 5개 내생변수간의 균형관계가 존재하였다. 금융위기가 급속하게 진행된 제2단계에서는 균형관계가 존재하지 않았다. 그러나 주가지수, 주가지수 선물가격 및 기준환율 변수를 내생변수로 하고, 나머지 변수를 외생변수로 분석한 경우에는 균형관계가 존재하였다. 금융위기 진정단계인 제3단계에서는 5개 내생변수간의 균형관계가 성립하였다.
본 논문에서는 KOSPI 200 주가지수 선물의 만기효과와 베이시스의 행태를 체계적으로 헤지 의사결정에 반영하기 위한 몇 가지 방법을 실증분석하였다. 우선 베이시스의 동태적 운동형태를 명시적으로 설정하지 않고 통계적인 방법을 통하여 헤지해제시점이 선물만기에 접근함에 따라 베이시스가 변동되는 양상을 반영한 헤지비율을 산출한다. 그 다음에는 헤지기간 전체에 걸친 베이시스의 운동형태를 명시적으로 설정하여 이에 입각한 헤지비율을 계산한다. 명시적인 베이시스의 운동형태는 비확률적인 과정과 확률적인 과정으로 다시 구분하고, 이 각각에 입각하여 최적헤지활동을 결정한다. 모든 헤지활동은 가장 최근까지의 정보를 이용하여 사전적으로 미래 헤지기간에 대한 의사결정을 하게 된다. 그러한 헤지활동의 사후적인 결과는 베이시스 행태를 별도로 고려하지 않고 단순선형회귀분석만을 이용하여 산출된 헤지성과와 비교되고, 변동성 감소 및 손실감소의 측면에서 각 접근방법이 가지는 특징 및 효율성을 평가한다. 실증 분석 결과, 헤지의 성과를 제고하기 위하여 선물의 만기효과와 베이시스의 행태변화를 체계적으로 반영한 세 가지의 시도 중 어느 것도 위험-수익의 2차원적인 비교에서 베이시스의 행태변화를 명시적으로 반영하지 않은 전통적 단순회귀분석을 압도하지 못하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.