• Title/Summary/Keyword: korea concrete institute

Search Result 13,561, Processing Time 0.032 seconds

A Study on Torsional Tensile Strength of Concrete (콘크리트의 비틀림 인장강도에 관한 연구)

  • 박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.160-165
    • /
    • 1996
  • The tensile of concrete in one of important factor for study of reinforced concrete as well as prestressed concrete structures. In many countries, a numerous experimental studies are being undertaken to investigate correlation between compressive and tensile strength of concrete. This study is focused on identifying the relationship between the compressive strength and torsional tensile strength of concrete and, on crack of RC and PC structure.

  • PDF

Chloride-ion Test of Seaside Concrete Structure (임해 콘크리트 구조물의 염분 침투량 분석)

  • 이장화;장종탁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.123-124
    • /
    • 1990
  • Seaside concrete structure is deteriorated by chloride-ion, sulphate and salt cristalization in concrete pore. Therefore the amount of these chemical substance should be analyzed for evaluating the durability of seaside concrete structure. In this study, the amount of chloride-ion in concrete was surveyed in order to estimate the damage state of concrete structure within am influence of seawater.

  • PDF

Determination of Cold Weather Concrete Periods Using Meteorological Data of Republic of Korea (기상자료를 이용한 한중콘크리트 적용 기간 산정)

  • Chung, Ji-Man;Han, Jun-Hui;Baek, Seong-Jin;Park, Jae-Woong;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.57-58
    • /
    • 2023
  • This study is to estimate cold weather concrete periods by analyzing data of Korea Meteorological Administration in terms of recently revised cold weather concrete regulation of Korea Concrete Institute.

  • PDF

Assessment of Mass Fraction and Melting Temperature for the Application of Limestone Concrete and Siliceous Concrete to Nuclear Reactor Basemat Considering Molten Coree-Concrete Interaction

  • Lee, Hojae;Cho, Jae-Leon;Yoon, Eui-Sik;Cho, Myungsug;Kim, Do-Gyeum
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.448-456
    • /
    • 2016
  • Severe accident scenarios in nuclear reactors, such as nuclear meltdown, reveal that an extremely hot molten core may fall into the nuclear reactor cavity and seriously affect the safety of the nuclear containment vessel due to the chain reaction caused by the reaction between the molten core and concrete. This paper reports on research focused on the type and amount of vapor produced during the reaction between a high-temperature molten core and concrete, as well as on the erosion rate of concrete and the heat transfer characteristics at its vicinity. This study identifies themass fraction and melting temperature as the most influential properties of concrete necessary for a safety analysis conducted in relation to the thermal interaction between the molten core and the basemat concrete. The types of concrete that are actually used in nuclear reactor cavities were investigated. The $H_2O$ content in concrete required for the computation of the relative amount of gases generated by the chemical reaction of the vapor, the quantity of $CO_2$ necessary for computing the cooling speed of the molten core, and the melting temperature of concrete are evaluated experimentally for the molten core-concrete interaction analysis.

Study on Strength Development of Concrete for Top-Down Method (역타공법에 적용을 위한 콘크리트 강도성상 연구)

  • 정근호;이종균;김영회;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.48-53
    • /
    • 1998
  • The purpose of this study to fine the mixture of concrete for Top-Down method. As a result, In fresh concrete, slump value and slump-flow value were increased as fly ash concrete(10% ratio). When plasticizer was added 1.5% by weigh of binder in concrete, no fly ash concrete and fly ash concrete(10% ratio) all occurred segregation. And, no fly ash concrete and fly concrete(10% ratio) all showed compressive strength development close plain concrete as increasing plasticizer quantity. Especially, in case of 1.5% plasticizer of binder showed high compressive strength development.

  • PDF

Effect of Concrete Strength on Shear Cracking Strength in Reinforced Concrete Beams (철근콘크리트보의 전단균열강도에 대한 콘크리트강도의 영향)

  • Kim, U;Koh, Gwang-Il;Kim, Dae-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.83-87
    • /
    • 1990
  • The effect of concrete strength on shear cracking strength in reinforced concrete beams is investigated analytically. The quantitative response of reinforced concrete beam-end-part with varing concrete stiffness, which is a function of concrete compressive strength, is examined utilizing a finite element mothod. The result indicates that the severer shear stress localization/concentration takes place in the beam having higher concrete strength. Thus the increase ratio of shear cracking strength with respect to concrete compressive strength decreases as the concrete strength becoms higher.

  • PDF