• Title/Summary/Keyword: knowledge reasoning

Search Result 565, Processing Time 0.025 seconds

Knowledge Representation and Reasoning using Metalogic in a Cooperative Multiagent Environment

  • Kim, Koono
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.35-48
    • /
    • 2022
  • In this study, it propose a proof theory method for expressing and reasoning knowledge in a multiagent environment. Since this method determines logical results in a mechanical way, it has developed as a core field from early AI research. However, since the proposition cannot always be proved in any set of closed sentences, in order for the logical result to be determinable, the range of expression is limited to the sentence in the form of a clause. In addition, the resolution principle, a simple and strong reasoning rule applicable only to clause-type sentences, is applied. Also, since the proof theory can be expressed as a meta predicate, it can be extended to the metalogic of the proof theory. Metalogic can be superior in terms of practicality and efficiency based on improved expressive power over epistemic logic of model theory. To prove this, the semantic method of epistemic logic and the metalogic method of proof theory are applied to the Muddy Children problem, respectively. As a result, it prove that the method of expressing and reasoning knowledge and common knowledge using metalogic in a cooperative multiagent environment is more efficient.

Integrating Case-Based Reasoning with DSS (DSS와 사례기반 추론의 결합)

  • Kim Jin-Baek
    • Management & Information Systems Review
    • /
    • v.2
    • /
    • pp.169-193
    • /
    • 1998
  • Case- based reasoning(CBR) offers a new approach for developing knowledge based systems. Unlike the rule-based paradigm, in which domain knowledge is encoded in the form of production rules, in the case-based approach the problem solving experience of the domain expert is encoded in the form of cases stored in a casebase(CB). CBR allows a reasoner (1) to propose solutions in domains that are not completely understood by the reasoner, (2) to evaluate solutions when no algorithmic method is available for evaluation, and (3) to interprete open-ended and ill-defined concepts. CBR also helps reasoner (4) take actions to avoid repeating past mistakes, and (5) focus its reasoning on important parts of a problem. Owing to the above advantages, CBR has successfully been applied to many kinds of problems such as design, planning, diagnosis and instruction. In this paper, I propose case-based DSS(CBDSS). CBDSS is an intelligent DSS using CBR technique. CBDSS consists of interface, case-based reasoner, maintainer, casebase management system, domain dependent CB, domain independent CB, and so on.

  • PDF

A Mechanism for Combining Quantitative and Qualitative Reasoning (정량 추론과 정성 추론의 통합 메카니즘 : 주가예측의 적용)

  • Kim, Myoung-Jong
    • Knowledge Management Research
    • /
    • v.10 no.2
    • /
    • pp.35-48
    • /
    • 2009
  • The paper proposes a quantitative causal ordering map (QCOM) to combine qualitative and quantitative methods in a framework. The procedures for developing QCOM consist of three phases. The first phase is to collect partially known causal dependencies from experts and to convert them into relations and causal nodes of a model graph. The second phase is to find the global causal structure by tracing causality among relation and causal nodes and to represent it in causal ordering graph with signed coefficient. Causal ordering graph is converted into QCOM by assigning regression coefficient estimated from path analysis in the third phase. Experiments with the prediction model of Korea stock price show results as following; First, the QCOM can support the design of qualitative and quantitative model by finding the global causal structure from partially known causal dependencies. Second, the QCOM can be used as an integration tool of qualitative and quantitative model to offerhigher explanatory capability and quantitative measurability. The QCOM with static and dynamic analysis is applied to investigate the changes in factors involved in the model at present as well discrete times in the future.

  • PDF

Development of On-Line Diagnostic Expert System : Heuristics and Influence Diagrams (현장진단 전문가 시스템의 개발 : 휴리스틱과 인플루언스 다이아그램)

  • Kim, Young-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.1
    • /
    • pp.95-113
    • /
    • 1997
  • This paper outlines a framework for a diagnosis of a complex system with uncertain information. Sensor validation ploys a vital role in the ability of the overall system to correctly determine the state of a system monitored by imperfect sensors. Here, emphases are put on the heuristic technology and post-processor for reasoning. Heuristic Sensor Validation (HSV) exploits deeper knowledge about parameter interaction within the plant to cull sensor faults from the data stream. Finally the modified probability distributions and validated data are used as input to the reasoning scheme which is the runtime version of the influence diagram. The output of the influence diagram is a diagnostic mapping from the symptoms or sensor readings to a determination of likely failure modes. Once likely failure modes are identified, a detailed diagnostic knowledge base suggests corrective actions to improve performance. This framework for a diagnostic expert system with sensor validation and reasoning under uncertainty applies in $HEATXPRT^{TM}$ a data-driven on-line expert system for diagnosing heat rate degradation problems in fossil power plants [1].

  • PDF

Knowledge Representation and Fuzzy Reasoning in the Level of Predicate Logic based on Fuzzy Pr/T Nets (퍼지 Pr/T 네트를 기반으로 하는 술어논리 수준의 지식표현과 퍼지추론)

  • 조상엽;이동은
    • Journal of Internet Computing and Services
    • /
    • v.2 no.2
    • /
    • pp.117-126
    • /
    • 2001
  • This paper presents fuzzy Pr/T nets to represent the fuzzy production rules of a knowledge-based system in the level of first-order predicate logic. The fuzzy Pr/T nets are fuzzy extension of the Pr/T nets. Based on the fuzzy Pr/T net, we propose a fuzzy reasoning algorithm. This algorithm is much closer to human intuition and reasoning than other methods because of using the proper belief functions according to fuzzy concepts in fuzzy production rules.

  • PDF

Case-Based Reasoning Framework for Data Model Reuse (데이터 모델 재사용을 위한 사례기반추론 프레임워크)

  • 이재식;한재홍
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.2
    • /
    • pp.33-55
    • /
    • 1997
  • A data model is a diagram that describes the properties of different categories of data and the associations among them within a business or information system. In spite of its importance and usefulness, data modeling activity requires not only a lot of time and effort but also extensive experience and expertise. The data models for similar business areas are analogous to one another. Therefore, it is reasonable to reuse the already-developed data models if the target business area is similar to what we have already analyzed before. In this research, we develop a case-based reasoning system for data model reuse, which we shall call CB-DM Reuser (Case-Based Data Model Reuser). CB-DM Reuse consists of four subsystems : the graphic user interface to interact with end user, the data model management system to build new data model, the case base to store the past data models, and the knowledge base to store data modeling and data model reusing knowledge. We present the functionality of CB-DM Reuser and show how it works on real-life a, pp.ication.

  • PDF

A Study on the Development of Robust Fault Diagnostic System Based on Neuro-Fuzzy Scheme

  • Kim, Sung-Ho;Lee, S-Sang-Yoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. By using the FCM, authors have proposed FCM-based fault diagnostic algorithm. However, it can offer multiple interpretations for a single fault. In process engineering, as experience accumulated, some form of quantitative process knowledge is available. If this information can be integrated into the FCM-based fault diagnosis, the diagnostic resolution can be further improved. The purpose of this paper is to propose an enhanced FCM-based fault diagnostic scheme. Firstly, the membership function of fuzzy set theory is used to integrate quantitative knowledge into the FCM-based diagnostic scheme. Secondly, modified TAM recall procedure is proposed. Considering that the integration of quantitative knowledge into FCM-based diagnosis requires a great deal of engineering efforts, thirdly, an automated procedure for fusing the quantitative knowledge into FCM-based diagnosis is proposed by utilizing self-learning feature of neural network. Finally, the proposed diagnostic scheme has been tested by simulation on the two-tank system.

  • PDF

A Study of Fuzzy Reasoning in Expert System (전문가 대체 시스템에서의 퍼지 추론에 관한 연구)

  • 김성혁
    • Journal of the Korean Society for information Management
    • /
    • v.7 no.1
    • /
    • pp.68-78
    • /
    • 1990
  • This paper shows the fuzzy reasoning process that is specifically designed to deal wit the inexactness or fuzziness in the expert systems. The impact of overall fuzzy reasoning reviewed when knowledge with certainty is provided. Also, the example of fuzzy reazoning used at probabilistic inference is presented.

  • PDF

Analysis of Mathematics Preservice Teachers' Mathematical Content Knowledge based on PISA 2012 Items (PISA 2012 공개 문항을 활용한 예비수학교사의 수학내용지식 분석 사례연구)

  • Rim, Haemee;Lee, Min Hee
    • The Mathematical Education
    • /
    • v.54 no.3
    • /
    • pp.207-222
    • /
    • 2015
  • Mathematics preservice teachers' Mathematical Content Knowledge ("MCK") includes not only knowledge for mathematics, but also academic knowledge for school mathematics and mathematical process knowledge. We can consider the items in PISA 2012 as suitable tools to assess process knowledge as well as mathematical content knowledge because these items are developed by competent international educational experts. Therefore, the responses to items with the low percentage of correct answers in conjunction with the mathematical contents were analyzed with focus on FMC. The results showed the reasoning competency in responses using the conditions of the problem and of understanding the conditions after reading the complex problems within the context (i.e. the reasoning and argumentation competency, and communication competency) requires improvements. Furthermore the results indicated the errors due to a lack of ability of devising strategies for problem solving. Based on the foregoing results, the implications towards the directions of the education for the preservice mathematics teachers have been derived.

A Individualized Reasoning Strategy using Learner's Cognitive Union (학습자 인지 구조체를 이용한 추론의 개별화 전략)

  • Kim, Yong-Beom;Kim, Yungsik
    • The Journal of Korean Association of Computer Education
    • /
    • v.9 no.5
    • /
    • pp.31-39
    • /
    • 2006
  • The change into the knowledge based information society requires a transformation of educational paradigm. Accordingly, intelligent learning and distance education are attracting a fair amount of attention. To apply the instructional learning method in this field, we need to consider a individualization of learning, as it were, abstraction of fact and path through learning, which is based on learner's traits, this focus entails a argument for individualized reasoning strategy. Therefore, in this paper, we design a learner's cognitive union, which is based on X-Neuronet(eXtended Neuronet), represent learner's hierarchical knowledge is able to self-learn, and grows adaptive union by proprietor. Additionally, we propose a individualized reasoning strategy, which relies upon learner's cognitive union, and verify the validity.

  • PDF