• Title/Summary/Keyword: knowledge generation learning

Search Result 119, Processing Time 0.031 seconds

Teaching Methodology for Future Mathematics Classroom:Focusing on Students' Generative Question in Ill-Structured Problem (미래학교 수학교실의 교육 방법론에 대한 탐색:비구조화된 문제에서 학생들의 질문 만들기를 중심으로)

  • Na, Miyeong;Cho, Hyungmi;Kwon, Oh Nam
    • The Mathematical Education
    • /
    • v.56 no.3
    • /
    • pp.301-318
    • /
    • 2017
  • This paper explores students' question generation process and their study in small group discussion. The research is based on Anthropological Theory of the Didactic developed by Chevallard. He argues that the savior (knowledge) we are dealing with at school is based on a paradigm that we prevail over whether we 'learn' or 'study' socially. In other words, we haven't provided students with autonomous research and learning opportunities under 'the dominant paradigm of visiting works'. As an alternative, he suggests that we should move on to a new didactic paradigm for 'questioning the world a question', and proposes the Study and Research Courses (SRC) as its pedagogical structure. This study explores the SRC structure of small group activities in solving ill-structured problems. In order to explore the SRC structure generated in the small group discussion, one middle school teacher and 7 middle school students participated in this study. The students were divided into two groups with 4 students and 3 students. The teacher conducted the lesson with ill-structured problems provided by researchers. We collected students' presentation materials and classroom video records, and then analyzed based on SRC structure. As a result, we have identified that students were able to focus on the valuable information they needed to explore. We found that the nature of the questions generated by students focused on details more than the whole of the problem. In the SRC course, we also found pattern of a small group discussion. In other words, they generated questions relatively personally, but sought answer cooperatively. This study identified the possibility of SRC as a tool to provide a holistic learning mode of small group discussions in small class, which bring about future mathematics classrooms. This study is meaningful to investigate how students develop their own mathematical inquiry process through self-directed learning, learner-specific curriculum are emphasized and the paradigm shift is required.

A Study on the Motivating Factors Affecting the Middle-Aged People in Choosing Major in Social Welfare (중장년층의 사회복지 전공 선택 동기 요인에 관한 연구)

  • Bae, Na-Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.96-102
    • /
    • 2019
  • This study proposes basic information to make effective environments for social welfare education, revealing the reasons why students choose the social welfare major at Konyang Cyber University. We conducted qualitative research with 41 students in the social welfare department at Konyang Cyber University. The result of this research is as follows. First, most students chose their major to get a certificate that can benefit them in the near future. Second, they chose their major as a way to achieve renown, and to enhance the quality of their lives. Third, they desired to contribute to society through their social work. Finally, individual experiences and family background were also motives. Based on the research, to improve learning outcomes in social welfare education, the necessary learning strategies are as follows. First, goal-oriented learning is necessary for students who want to get the certificate. A practical curriculum needs to contain both practical skills and professional knowledge applicable to the social work field. Second, education for students who choose the major to gain fame, and to develop their lives, requires generation-integrated education to help them review their lives and find their own meaning in life. Third, education for students who choose the major for a practical social contribution has to contain volunteer training that can lead them to be professional volunteers in society. Fourth, education for students who choose the major based on their personal experiences and their family background needs to deal with case management, which discovers the recipients who need help in society and the students who can achieve visible outcomes after all.

A New Approach to Automatic Keyword Generation Using Inverse Vector Space Model (키워드 자동 생성에 대한 새로운 접근법: 역 벡터공간모델을 이용한 키워드 할당 방법)

  • Cho, Won-Chin;Rho, Sang-Kyu;Yun, Ji-Young Agnes;Park, Jin-Soo
    • Asia pacific journal of information systems
    • /
    • v.21 no.1
    • /
    • pp.103-122
    • /
    • 2011
  • Recently, numerous documents have been made available electronically. Internet search engines and digital libraries commonly return query results containing hundreds or even thousands of documents. In this situation, it is virtually impossible for users to examine complete documents to determine whether they might be useful for them. For this reason, some on-line documents are accompanied by a list of keywords specified by the authors in an effort to guide the users by facilitating the filtering process. In this way, a set of keywords is often considered a condensed version of the whole document and therefore plays an important role for document retrieval, Web page retrieval, document clustering, summarization, text mining, and so on. Since many academic journals ask the authors to provide a list of five or six keywords on the first page of an article, keywords are most familiar in the context of journal articles. However, many other types of documents could not benefit from the use of keywords, including Web pages, email messages, news reports, magazine articles, and business papers. Although the potential benefit is large, the implementation itself is the obstacle; manually assigning keywords to all documents is a daunting task, or even impractical in that it is extremely tedious and time-consuming requiring a certain level of domain knowledge. Therefore, it is highly desirable to automate the keyword generation process. There are mainly two approaches to achieving this aim: keyword assignment approach and keyword extraction approach. Both approaches use machine learning methods and require, for training purposes, a set of documents with keywords already attached. In the former approach, there is a given set of vocabulary, and the aim is to match them to the texts. In other words, the keywords assignment approach seeks to select the words from a controlled vocabulary that best describes a document. Although this approach is domain dependent and is not easy to transfer and expand, it can generate implicit keywords that do not appear in a document. On the other hand, in the latter approach, the aim is to extract keywords with respect to their relevance in the text without prior vocabulary. In this approach, automatic keyword generation is treated as a classification task, and keywords are commonly extracted based on supervised learning techniques. Thus, keyword extraction algorithms classify candidate keywords in a document into positive or negative examples. Several systems such as Extractor and Kea were developed using keyword extraction approach. Most indicative words in a document are selected as keywords for that document and as a result, keywords extraction is limited to terms that appear in the document. Therefore, keywords extraction cannot generate implicit keywords that are not included in a document. According to the experiment results of Turney, about 64% to 90% of keywords assigned by the authors can be found in the full text of an article. Inversely, it also means that 10% to 36% of the keywords assigned by the authors do not appear in the article, which cannot be generated through keyword extraction algorithms. Our preliminary experiment result also shows that 37% of keywords assigned by the authors are not included in the full text. This is the reason why we have decided to adopt the keyword assignment approach. In this paper, we propose a new approach for automatic keyword assignment namely IVSM(Inverse Vector Space Model). The model is based on a vector space model. which is a conventional information retrieval model that represents documents and queries by vectors in a multidimensional space. IVSM generates an appropriate keyword set for a specific document by measuring the distance between the document and the keyword sets. The keyword assignment process of IVSM is as follows: (1) calculating the vector length of each keyword set based on each keyword weight; (2) preprocessing and parsing a target document that does not have keywords; (3) calculating the vector length of the target document based on the term frequency; (4) measuring the cosine similarity between each keyword set and the target document; and (5) generating keywords that have high similarity scores. Two keyword generation systems were implemented applying IVSM: IVSM system for Web-based community service and stand-alone IVSM system. Firstly, the IVSM system is implemented in a community service for sharing knowledge and opinions on current trends such as fashion, movies, social problems, and health information. The stand-alone IVSM system is dedicated to generating keywords for academic papers, and, indeed, it has been tested through a number of academic papers including those published by the Korean Association of Shipping and Logistics, the Korea Research Academy of Distribution Information, the Korea Logistics Society, the Korea Logistics Research Association, and the Korea Port Economic Association. We measured the performance of IVSM by the number of matches between the IVSM-generated keywords and the author-assigned keywords. According to our experiment, the precisions of IVSM applied to Web-based community service and academic journals were 0.75 and 0.71, respectively. The performance of both systems is much better than that of baseline systems that generate keywords based on simple probability. Also, IVSM shows comparable performance to Extractor that is a representative system of keyword extraction approach developed by Turney. As electronic documents increase, we expect that IVSM proposed in this paper can be applied to many electronic documents in Web-based community and digital library.

Context Prediction Using Right and Wrong Patterns to Improve Sequential Matching Performance for More Accurate Dynamic Context-Aware Recommendation (보다 정확한 동적 상황인식 추천을 위해 정확 및 오류 패턴을 활용하여 순차적 매칭 성능이 개선된 상황 예측 방법)

  • Kwon, Oh-Byung
    • Asia pacific journal of information systems
    • /
    • v.19 no.3
    • /
    • pp.51-67
    • /
    • 2009
  • Developing an agile recommender system for nomadic users has been regarded as a promising application in mobile and ubiquitous settings. To increase the quality of personalized recommendation in terms of accuracy and elapsed time, estimating future context of the user in a correct way is highly crucial. Traditionally, time series analysis and Makovian process have been adopted for such forecasting. However, these methods are not adequate in predicting context data, only because most of context data are represented as nominal scale. To resolve these limitations, the alignment-prediction algorithm has been suggested for context prediction, especially for future context from the low-level context. Recently, an ontological approach has been proposed for guided context prediction without context history. However, due to variety of context information, acquiring sufficient context prediction knowledge a priori is not easy in most of service domains. Hence, the purpose of this paper is to propose a novel context prediction methodology, which does not require a priori knowledge, and to increase accuracy and decrease elapsed time for service response. To do so, we have newly developed pattern-based context prediction approach. First of ail, a set of individual rules is derived from each context attribute using context history. Then a pattern consisted of results from reasoning individual rules, is developed for pattern learning. If at least one context property matches, say R, then regard the pattern as right. If the pattern is new, add right pattern, set the value of mismatched properties = 0, freq = 1 and w(R, 1). Otherwise, increase the frequency of the matched right pattern by 1 and then set w(R,freq). After finishing training, if the frequency is greater than a threshold value, then save the right pattern in knowledge base. On the other hand, if at least one context property matches, say W, then regard the pattern as wrong. If the pattern is new, modify the result into wrong answer, add right pattern, and set frequency to 1 and w(W, 1). Or, increase the matched wrong pattern's frequency by 1 and then set w(W, freq). After finishing training, if the frequency value is greater than a threshold level, then save the wrong pattern on the knowledge basis. Then, context prediction is performed with combinatorial rules as follows: first, identify current context. Second, find matched patterns from right patterns. If there is no pattern matched, then find a matching pattern from wrong patterns. If a matching pattern is not found, then choose one context property whose predictability is higher than that of any other properties. To show the feasibility of the methodology proposed in this paper, we collected actual context history from the travelers who had visited the largest amusement park in Korea. As a result, 400 context records were collected in 2009. Then we randomly selected 70% of the records as training data. The rest were selected as testing data. To examine the performance of the methodology, prediction accuracy and elapsed time were chosen as measures. We compared the performance with case-based reasoning and voting methods. Through a simulation test, we conclude that our methodology is clearly better than CBR and voting methods in terms of accuracy and elapsed time. This shows that the methodology is relatively valid and scalable. As a second round of the experiment, we compared a full model to a partial model. A full model indicates that right and wrong patterns are used for reasoning the future context. On the other hand, a partial model means that the reasoning is performed only with right patterns, which is generally adopted in the legacy alignment-prediction method. It turned out that a full model is better than a partial model in terms of the accuracy while partial model is better when considering elapsed time. As a last experiment, we took into our consideration potential privacy problems that might arise among the users. To mediate such concern, we excluded such context properties as date of tour and user profiles such as gender and age. The outcome shows that preserving privacy is endurable. Contributions of this paper are as follows: First, academically, we have improved sequential matching methods to predict accuracy and service time by considering individual rules of each context property and learning from wrong patterns. Second, the proposed method is found to be quite effective for privacy preserving applications, which are frequently required by B2C context-aware services; the privacy preserving system applying the proposed method successfully can also decrease elapsed time. Hence, the method is very practical in establishing privacy preserving context-aware services. Our future research issues taking into account some limitations in this paper can be summarized as follows. First, user acceptance or usability will be tested with actual users in order to prove the value of the prototype system. Second, we will apply the proposed method to more general application domains as this paper focused on tourism in amusement park.

The Study on Korean Prosody Generation using Artificial Neural Networks (인공 신경망의 한국어 운율 발생에 관한 연구)

  • Min Kyung-Joong;Lim Un-Cheon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.337-340
    • /
    • 2004
  • The exactly reproduced prosody of a TTS system is one of the key factors that affect the naturalness of synthesized speech. In general, rules about prosody had been gathered either from linguistic knowledge or by analyzing the prosodic information from natural speech. But these could not be perfect and some of them could be incorrect. So we proposed artificial neural network(ANN)s that can be trained to team the prosody of natural speech and generate it. In learning phase, let ANNs learn the pitch and energy contour of center phoneme by applying a string of phonemes in a sentence to ANNs and comparing the output pattern with target pattern and making adjustment in weighting values to get the least mean square error between them. In test phase, the estimation rates were computed. We saw that ANNs could generate the prosody of a sentence.

  • PDF

Generation United News In Education Using Knowledge Sharing Service (지식공유서비스를 활용한 세대통합형 NIE)

  • Jang, Jae-Kyung;Kim, Ho-Sung
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02b
    • /
    • pp.213-218
    • /
    • 2007
  • 정보생산을 촉진하는 새로운 형태의 사이버공간이 나타나면서 지식의 창출과 지식을 얻는 형태가 변화하고 있다. 최종사용자에게 웹 애플리케이션을 제공하는 컴퓨팅 플랫폼인 web 2.0의 도입으로 손쉽게 자신이 필요한 정보를 분류할 수 있는 웹 컨텐츠가 활발히 제공되고 있으며 제공된 컨텐츠를 활용하여 수많은 정보 속에서 자신만의 보석을 찾아 손쉽게 지식을 쌓아 관리를 하고 있다. 이러한 지식공유서비스는 무분별한 정보, 중복된 지식, 그리고 단순한 관리로 인해 자신이 원하는 지식을 얻기란 쉽지 않은 것이 사실이다. 본 논문에서는 온라인상의 정보를 탐색하기 위해서 인터넷을 이용하던 네티즌들이 정보생산자로서 참여하는 공간으로 등장한 '지식공유서비스'를 기반으로 지식 창출 및 관리자로서 시니어를 활용하여 지식의 수용자로서 유아들을 위한 NIE (News In Education) 활용 교육 체계를 제안한다. 뉴스는 유아부터 성인까지 활용될 수 있는 좋은 교육 자료로서 NIE를 통하여 사고력, 논리력, 표현력, 창의력 등 여러 영역에 걸친 능력을 향상시킬 수 있다. 특히 유치원이나 학교의 교과과정에 맞추어 이러한 능력들을 더욱 배가 시킬 수 있다는 점에서 NIE가 더욱 각광받고 있다. 본 연구는 미디어 융합의 결과로 인터넷 뉴스를 활용해 생활과 분리되지 않은 통합교육을 할 수 있는 SCORM 기반의 유아용 콘텐츠를 생성하여 유아 교육에 활용하고자 한다. 또한, 유아용 NIE 교육 콘텐츠는 시니어들을 NIE 강사로 양성하였을 때 학습 자료로도 활용된다. 시니어들을 NIE 강사로 양성함으로써 시니어의 일자리 창출 및 지역사회 통합과 1세대인 여성시니어와 3세대인 아동 간의 세대통합을 이끌어 낼 수 있도록 하는 것에 목적을 두고 시니어 NIE 콘텐츠를 생성하고자 한다. NIE에 생성되는 지식을 생성하고 관리하기 위한 지식 솔루션으로 위키의 기능을 추가하여 개발하고자 한다. 위키를 사용하므로 개별적으로 존재하던 지식을 공동의 지식으로 공유할 수 있으며 의견을 하나로 통합하는 과정에서도 유용하게 사용될 수 있을 것이다. 위키를 이용한 시니어 NIE 콘텐츠에서는 교수 학습 계획안 및 NIE 아이디어를 공동 작업을 통하여 효율적으로 지식을 생성할 수 있으며 여러 사람들이 여러 단계를 거치면서 하나의 정제된 지식을 생성하게 되므로 양질의 교수 학습 계획안이나 NIE 아이디어를 창출할 수 있을 것이다.

  • PDF

O.P.E.N Triad: The Future Success for Individuals, Institutes, and Industries

  • Kim, Hae-Jung;Forney, Judith;Crowley, Ruth
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.12
    • /
    • pp.1980-1991
    • /
    • 2010
  • This study proposes the O P E N Triad framework as a future set of tools and perspectives for individual members and institutes to further their professional and academic potential as well as prospect and vitalize the future of the Korean Clothing and Textiles discipline through a global perspective. The millennial generation desires On-demand, Personal, Engaging, and Networked (O P E N) experiences effecting cultural change for creative and influential interaction in transactions, communication, and education. O P E N Individuals offers a WebSphere model as a holistic learning system that has a synergizing value of education across academic courses, industries, and cultures. Through a digitalized and virtualized class, it complements relevant technologies already familiar to the student population. By employing environmental scanning approaches, the most influential and viable future global issues related to the clothing and textiles discipline are identified and dialogued within O P E N Institutes. For future clothing and textiles institutes, this scanning allows them to be open to new ideas, to focus on inter-engagements, to collaborate among individuals, to associate as a part of web of people, organizations, and ideas, to personalize an institutes curricula, and to dialogue generative knowledge. O P E N Industries reveals three dominant future issues that cross academia and industry, sustainability, supply chain management, and social networking. In-depth interviews with U.S. industry experts identified interdependent gaps in global consumer experience practices and suggested the following gaps as future research areas: a standardized business model to the entrepreneurial model, strategic management to a sustainable competitive advantage, standardized to differentiated products, services and operations, market segmentation to global consumer clusters, business-driven marketplaces to consumer-engaged marketspaces, and excellent services to optimal experience. This O P E N Triad framework empowers millennial students, universities, and industries to anticipate and prepare for a radically changing world.

Exploration of the Composite Properties of Linear Functions from Instrumental Genesis of CAS and Mathematical Knowledge Discovery (CAS의 도구발생과 수학 지식의 발견 관점에서 고찰한 일차함수의 합성 성질 탐구)

  • Kim, Jin-Hwan;Cho, Cheong-Soo
    • Communications of Mathematical Education
    • /
    • v.24 no.3
    • /
    • pp.611-626
    • /
    • 2010
  • The purpose of this study is to explore the composite properties of linear functions using CAS calculators. The meaning and processes in which technological tools such as CAS calculators generated to instrument are reviewed. Other theoretical topic is the design of an exploring model of observing-conjecturing-reasoning and proving using CAS on experimental mathematics. Based on these background, the researchers analyzed the properties of the family of composite functions of linear functions. From analysis, instrumental capacity of CAS such as graphing, table generation and symbolic manipulation is a meaningful tool for this exploration. The result of this study identified that CAS as a mediator of mathematical activity takes part of major role of changing new ways of teaching and learning school mathematics.

Study on Effect of Exercise Performance using Non-face-to-face Fitness MR Platform Development (비대면 휘트니스 MR 플랫폼 개발을 활용한 운동 수행 효과에 관한 연구)

  • Kim, Jun-woo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.571-576
    • /
    • 2021
  • This study was carried out to overcome the problems of the existing fitness business and to build a fitness system that can meet the increased demand in the Corona situation. As a platform technology for non-face-to-face fitness edutainment service, it is a next-generation fitness exercise device that can use various body parts and synchronize network-type information. By synchronizing the exercise information of the fitness equipment, it was composed of learning contents through MR-based avatars. A quantified result was derived from examining the applicability of the customized evaluation system through momentum analysis with A.I analysis applying the LSTM-based algorithm according to the cumulative exercise effect of the user. It is a motion capture and 3D visualization fitness program for the application of systematic exercise techniques through academic experts, and it is judged that it will contribute to the improvement of the user's fitness knowledge and exercise ability.

Analysis of Inquiry Unit of Science 10 in Terms of Nature of Science (과학의 본성의 측면에서 10학년 과학의 탐구 단원 분석)

  • Cho, Jung-Il
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.6
    • /
    • pp.685-695
    • /
    • 2008
  • An analysis on the Inquiry unit of Science 10 textbooks was conducted in terms of nature of science (NOS). The subject of the analysis was instructional objectives, activities and sentences in the unit of ten Science 10 textbooks. Contents of the instructional objectives could be grouped into nature of science, nature of scientists, scientific methods, and Science-Technology-Society. The concrete nature of scientific knowledge (SK) and constructing scientific theory or model, however, were not found in the objectives. The total number of activities in the Inquiry unit was 38. Seventeen out of them were presented without any supplemental or introductory materials, and 21 activities were provided with information followed by questions, discussions or investigations. For the most activities, any clear statements about NOS elements and desired/informed views of NOS were not made. The sentences of the Inquiry units were mixed up with constructivist and inductive views on NOS. The definition of science tended to be described based on the inductive view. And the generation of SK tended to be described as discovering regularities in natural phenomena rather than constructing theories. For science teachers who want to teach NOS effectively, stating clear learning objectives and elements of NOS and presenting reading materials with relevant views on nature of science were necessary.