• Title/Summary/Keyword: knowledge engineering

Search Result 4,673, Processing Time 0.038 seconds

Streamflow response to climate change during the wet and dry seasons in South Korea under a CMIP5 climate model (CMIP5 기반 건기 및 우기 시 국내 하천유량의 변화전망 및 분석)

  • Ghafouri-Azar, Mona;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1091-1103
    • /
    • 2018
  • Having knowledge regarding to which region is prone to drought or flood is a crucial issue in water resources planning and management. This could be more challenging when the occurrence of these hazards affected by climate change. In this study the future streamflow during the wet season (July to September) and dry season (October to March) for the twenty first century of South Korea was investigated. This study used the statistics of precipitation, maximum and minimum temperature of one global climate model (i.e., INMCM4) with 2 RCPs (RCP4.5 and RCP8.5) scenarios as inputs for The Precipitation-Runoff Modelling System (PRMS) model. The PRMS model was tested for the historical periods (1966-2016) and then the parameters of model were used to project the future changes of 5 large River basins in Korea for three future periods (2025s, 2055s, and 2085s) compared to the reference period (1976-2005). Then, the different responses in climate and streamflow projection during these two seasons (wet and dry) was investigated. The results showed that under INMCM4 scenario, the occurrence of drought in dry season is projected to be stronger in 2025s than 2055s from decreasing -7.23% (-7.06%) in 2025s to -3.81% (-0.71%) in 2055s for RCP4.5 (RCP8.5). Regarding to the far future (2085s), for RCP 4.5 is projected to increase streamflow in the northern part, and decrease streamflow in the southern part (-3.24%), however under RCP8.5 almost all basins are vulnerable to drought, especially in the southern part (-16.51%). Also, during the wet season both increasing (Almost in northern and western part) and decreasing (almost in the southern part) in streamflow relative to the reference period are projected for all periods and RCPs under INMCM4 scenario.

A study on the structure of the Three storied Stone pagoda in Gameunsa Temple site (감은사지 삼층석탑 구조)

  • Nam, si-jin
    • Korean Journal of Heritage: History & Science
    • /
    • v.38
    • /
    • pp.329-358
    • /
    • 2005
  • The Three storied Stone pagoda in Gameunsa Temple site, one of the early staged stone pagodas, has been known as a standard for Silla stone pagodas. A stone pagoda is not only a stone art work and but also a stone structure. Most studies and investigation of the stone pagoda has done mainly based on style and chronological research according to an art historical view. However, there is not an attempt to research the stone pagoda as a stone architecture. Most Korean experts at the stone pagoda has art history in their background. Engineers who can understand the structure of the stone pagoda are very limited. More architectural and engineering approach is need to research not only art historial understanding but also safety as a structure. We can find many technical know-how from our ancestors who made stone pagodas. 1. To reduce any deformation such as relaxation and sinking of BuJae which is caused by a heavy load, the BuJae (consist of a foundation stone and lower stereobates) should be enlarged. 2. A special construction method for connection between Myonsuk and Tangjoo was invented. This unique method is not used any longer after the Three storied Stone pagoda in Gameunsa Temple site. 3. The upper BuJae and the lower BuJae are missed each other by making a difference of Okgaesuk and Okgaebatchim in size. It is done for a distribution of perpendicular load and a prevention for relaxation of BuJae. 4. The center of gravity in the BuJae is located to the center of the stone pagoda by trimming the upper surface of the Okgaebatchim into a convex shape. The man who made stone pagodas had excellent knowledge on the engineering and techniques to understand the structure of the stone pagodas. We can confirm it as follows: the enlarged BuJae, dislocated connection between upper Bujae and lower BuJae, and moving the center of gravity close to the center of the stone pagoda.

Research Trend of Estuarine Ecosystem Monitoring and Assessment (국내 하구 수생태계 현황 및 건강성 조사의 성과와 하구 생태계의 국외 연구동향)

  • Won, Doo-Hee;Lim, Sung-Ho;Park, Jihyung;Moon, Jeong-Suk;Do, Yuno
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • An estuary is an area where a freshwater river or stream meets the ocean. Even before the importance of the value of estuaries was recognized, the estuary was lost because of large-scale conversion by draining, filling, damming, and dredging. In South Korea, 643 estuaries are located, and the total area is 3,248,300 ha, accounting for 32.5% of the total area of South Korea. Over 35% of Korean estuaries are closed estuaries which are only temporally connected with the sea, either permanently or periodically. Since 2008, in order to preserve the estuary ecosystem and solve major issues in the estuary by accumulating knowledge about the estuarine ecosystem, the Ministry of Environment of Republic of Korea has been conducting the "Estuarine Ecosystem Monitoring and Assessment Project". At 668 sites of 325 estuaries, epilithic diatom, benthic macroinvertebrate, fish, and vegetation are investigated, and the habitat condition of each site is evaluated using the newly developed biotic index. More than 100 researchers annually record 2,097 species of estuaries according to the standardized survey guidelines over the past 14 years and provide strictly managed data necessary for establishing estuaries conservation policies. As a result of bibliometric analysis of 1,195 research articles related to the monitoring and assessment of the estuarine ecosystem, research on pollutants such as heavy metals and sediment control have recently been conducted. "Estuarine Ecosystem Monitoring and Assessment Project" is an ecological monitoring type of long-term mandated monitoring that is usually focused on identifying trends. Although it is difficult to identify the mechanism influencing a change in an ecosystem through long-term mandated monitoring, providing empirical data for supporting evidence-based policy, decision-making, and the management of ecosystems. In order to increase the efficiency of the project, research to investigate the relationship between sediments and pollutants and organisms can be conducted at specific estuaries or sites to compensate for the shortcomings of mandatory monitoring.

Visible and SWIR Satellite Image Fusion Using Multi-Resolution Transform Method Based on Haze-Guided Weight Map (Haze-Guided Weight Map 기반 다중해상도 변환 기법을 활용한 가시광 및 SWIR 위성영상 융합)

  • Taehong Kwak;Yongil Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.283-295
    • /
    • 2023
  • With the development of sensor and satellite technology, numerous high-resolution and multi-spectral satellite images have been available. Due to their wavelength-dependent reflection, transmission, and scattering characteristics, multi-spectral satellite images can provide complementary information for earth observation. In particular, the short-wave infrared (SWIR) band can penetrate certain types of atmospheric aerosols from the benefit of the reduced Rayleigh scattering effect, which allows for a clearer view and more detailed information to be captured from hazed surfaces compared to the visible band. In this study, we proposed a multi-resolution transform-based image fusion method to combine visible and SWIR satellite images. The purpose of the fusion method is to generate a single integrated image that incorporates complementary information such as detailed background information from the visible band and land cover information in the haze region from the SWIR band. For this purpose, this study applied the Laplacian pyramid-based multi-resolution transform method, which is a representative image decomposition approach for image fusion. Additionally, we modified the multiresolution fusion method by combining a haze-guided weight map based on the prior knowledge that SWIR bands contain more information in pixels from the haze region. The proposed method was validated using very high-resolution satellite images from Worldview-3, containing multi-spectral visible and SWIR bands. The experimental data including hazed areas with limited visibility caused by smoke from wildfires was utilized to validate the penetration properties of the proposed fusion method. Both quantitative and visual evaluations were conducted using image quality assessment indices. The results showed that the bright features from the SWIR bands in the hazed areas were successfully fused into the integrated feature maps without any loss of detailed information from the visible bands.

Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone (Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지)

  • Ha, Eu Tteum;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.123-132
    • /
    • 2013
  • As the smartphones are equipped with various sensors such as the accelerometer, GPS, gravity sensor, gyros, ambient light sensor, proximity sensor, and so on, there have been many research works on making use of these sensors to create valuable applications. Human activity recognition is one such application that is motivated by various welfare applications such as the support for the elderly, measurement of calorie consumption, analysis of lifestyles, analysis of exercise patterns, and so on. One of the challenges faced when using the smartphone sensors for activity recognition is that the number of sensors used should be minimized to save the battery power. When the number of sensors used are restricted, it is difficult to realize a highly accurate activity recognizer or a classifier because it is hard to distinguish between subtly different activities relying on only limited information. The difficulty gets especially severe when the number of different activity classes to be distinguished is very large. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we take to dealing with this ten-class problem is to use the ensemble of nested dichotomy (END) method that transforms a multi-class problem into multiple two-class problems. END builds a committee of binary classifiers in a nested fashion using a binary tree. At the root of the binary tree, the set of all the classes are split into two subsets of classes by using a binary classifier. At a child node of the tree, a subset of classes is again split into two smaller subsets by using another binary classifier. Continuing in this way, we can obtain a binary tree where each leaf node contains a single class. This binary tree can be viewed as a nested dichotomy that can make multi-class predictions. Depending on how a set of classes are split into two subsets at each node, the final tree that we obtain can be different. Since there can be some classes that are correlated, a particular tree may perform better than the others. However, we can hardly identify the best tree without deep domain knowledge. The END method copes with this problem by building multiple dichotomy trees randomly during learning, and then combining the predictions made by each tree during classification. The END method is generally known to perform well even when the base learner is unable to model complex decision boundaries As the base classifier at each node of the dichotomy, we have used another ensemble classifier called the random forest. A random forest is built by repeatedly generating a decision tree each time with a different random subset of features using a bootstrap sample. By combining bagging with random feature subset selection, a random forest enjoys the advantage of having more diverse ensemble members than a simple bagging. As an overall result, our ensemble of nested dichotomy can actually be seen as a committee of committees of decision trees that can deal with a multi-class problem with high accuracy. The ten classes of activities that we distinguish in this paper are 'Sitting', 'Standing', 'Walking', 'Running', 'Walking Uphill', 'Walking Downhill', 'Running Uphill', 'Running Downhill', 'Falling', and 'Hobbling'. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window of the last 2 seconds, etc. For experiments to compare the performance of END with those of other methods, the accelerometer data has been collected at every 0.1 second for 2 minutes for each activity from 5 volunteers. Among these 5,900 ($=5{\times}(60{\times}2-2)/0.1$) data collected for each activity (the data for the first 2 seconds are trashed because they do not have time window data), 4,700 have been used for training and the rest for testing. Although 'Walking Uphill' is often confused with some other similar activities, END has been found to classify all of the ten activities with a fairly high accuracy of 98.4%. On the other hand, the accuracies achieved by a decision tree, a k-nearest neighbor, and a one-versus-rest support vector machine have been observed as 97.6%, 96.5%, and 97.6%, respectively.

Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification (전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법)

  • Byambajav, Batkhuu;Alikhanov, Jumabek;Fang, Yang;Ko, Seunghyun;Jo, Geun Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet) is one class of the powerful Deep Neural Network that can analyze and learn hierarchies of visual features. Originally, first neural network (Neocognitron) was introduced in the 80s. At that time, the neural network was not broadly used in both industry and academic field by cause of large-scale dataset shortage and low computational power. However, after a few decades later in 2012, Krizhevsky made a breakthrough on ILSVRC-12 visual recognition competition using Convolutional Neural Network. That breakthrough revived people interest in the neural network. The success of Convolutional Neural Network is achieved with two main factors. First of them is the emergence of advanced hardware (GPUs) for sufficient parallel computation. Second is the availability of large-scale datasets such as ImageNet (ILSVRC) dataset for training. Unfortunately, many new domains are bottlenecked by these factors. For most domains, it is difficult and requires lots of effort to gather large-scale dataset to train a ConvNet. Moreover, even if we have a large-scale dataset, training ConvNet from scratch is required expensive resource and time-consuming. These two obstacles can be solved by using transfer learning. Transfer learning is a method for transferring the knowledge from a source domain to new domain. There are two major Transfer learning cases. First one is ConvNet as fixed feature extractor, and the second one is Fine-tune the ConvNet on a new dataset. In the first case, using pre-trained ConvNet (such as on ImageNet) to compute feed-forward activations of the image into the ConvNet and extract activation features from specific layers. In the second case, replacing and retraining the ConvNet classifier on the new dataset, then fine-tune the weights of the pre-trained network with the backpropagation. In this paper, we focus on using multiple ConvNet layers as a fixed feature extractor only. However, applying features with high dimensional complexity that is directly extracted from multiple ConvNet layers is still a challenging problem. We observe that features extracted from multiple ConvNet layers address the different characteristics of the image which means better representation could be obtained by finding the optimal combination of multiple ConvNet layers. Based on that observation, we propose to employ multiple ConvNet layer representations for transfer learning instead of a single ConvNet layer representation. Overall, our primary pipeline has three steps. Firstly, images from target task are given as input to ConvNet, then that image will be feed-forwarded into pre-trained AlexNet, and the activation features from three fully connected convolutional layers are extracted. Secondly, activation features of three ConvNet layers are concatenated to obtain multiple ConvNet layers representation because it will gain more information about an image. When three fully connected layer features concatenated, the occurring image representation would have 9192 (4096+4096+1000) dimension features. However, features extracted from multiple ConvNet layers are redundant and noisy since they are extracted from the same ConvNet. Thus, a third step, we will use Principal Component Analysis (PCA) to select salient features before the training phase. When salient features are obtained, the classifier can classify image more accurately, and the performance of transfer learning can be improved. To evaluate proposed method, experiments are conducted in three standard datasets (Caltech-256, VOC07, and SUN397) to compare multiple ConvNet layer representations against single ConvNet layer representation by using PCA for feature selection and dimension reduction. Our experiments demonstrated the importance of feature selection for multiple ConvNet layer representation. Moreover, our proposed approach achieved 75.6% accuracy compared to 73.9% accuracy achieved by FC7 layer on the Caltech-256 dataset, 73.1% accuracy compared to 69.2% accuracy achieved by FC8 layer on the VOC07 dataset, 52.2% accuracy compared to 48.7% accuracy achieved by FC7 layer on the SUN397 dataset. We also showed that our proposed approach achieved superior performance, 2.8%, 2.1% and 3.1% accuracy improvement on Caltech-256, VOC07, and SUN397 dataset respectively compare to existing work.

An Analysis of Educational Factors on Career Choice of Science-gifted Students to Science and Technology Bound Universities (과학영재의 이공계 대학 진로선택에 영향을 미치는 교육적 요인 분석)

  • Lee, Ji-Ae;Park, Soo-Kyong;Kim, Young-Min
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.1
    • /
    • pp.15-29
    • /
    • 2012
  • The purpose of this study was to investigate the educational factors on career choice of science-gifted students to science and technology bound universities and the difference of perception in regards to group factors. In addition, this study aimed to examine the effects of science-gifted education and critical events in relation to career choice to science and technology bound universities. For the study, 104 university freshmen, 75 males and 29 females, were sampled from UNIST (Ulsan National Institute of Science and Technology), that many science high school graduates entered this year. The survey was conducted with questionnaires to do with the perceptions concerning career choice and educational factors that cause them to choose such career directions. The educational factors on career choice to science and technology bound universities were classified as 3 main categories such as educational environment factor (teaching-learning factor), human factor, attitude towards science factor and the subcategories within each category. The research findings are as follows: First, the factors were closely connected with each other and 'the project centered classes' were highly interrelated with other educational environment factors such as 'the experiment activity and environment for the activity' and 'influence of teachers (professors).' Second, the female students and graduates of the science high school were more positively influenced by the educational environment and human factors on their decision for career than male students and graduates of the general high school. Third, this research found that historical scientific knowledge, perception of scientists' social status and job applications in the science field gave less influence rather than other factors on their decision for career. As a result of examining critical events for science-gifted education in relation to career choice to science and technology bound universities, numerous students mentioned that the extracurricular science activities such as science camps and field trips gave significant effects on students' career choices to science and engineering fields.

A Study on Methods for the Visualization of Stage Space through Stage Lighting (무대조명을 통한 무용 예술의 무대공간 시각화 방안 연구)

  • Lee, Jang-Weon;Yi, Chin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.4
    • /
    • pp.16-28
    • /
    • 2009
  • Stage art basically builds upon the essence of "seeing," and at the same time, possesses relativity in showing and seeing. Stage lighting uses artificial light to solve the essence of "seeing", which is the foundation of stage art, and coming into the modern age, its role has been enhanced to an important medium for visual expression in stage art, due to the lighting tools that developed at a rapid pace along with the discovery of electricity, as well as the development of optics. Therefore, not only does lighting use a medium known as light in a field of stage art that gives mental and emotional inspiration to the audience, and aesthetically expresses time and space. In other words, stage lighting is a complex function of light engineering (technology and science) and aesthetic sense (feeling and art). This study aims to do research on methods for the visualization of stage space through lighting, mainly focused on dancing. I have studied the basics of stage lighting, its relations with other fields of stage art, and the functions and characteristics of lighting. Results show that lighting could be used to maximize the visualization of dancing and emphasizing the artistic growth of lighting and its ability to aesthetically express and I came to the following conclusions. First, lighting uses the forms and directions of light that various tools are able to produce in order to visualize the space on stage, and can maximally express the image that the work seeks. Second, it is possible to use lighting, through the movement of light, as a visual representation of the configuration of space in dancing works. Third, through the expression of visual and spatial aspects created by light, the work's dramatic catharsis can bring out mental and emotional feelings form the audience. Fourth, lighting can be seen not as a supporting role, but as an original visual design. To conclude, in order for lighting to be freed form the simple function of "lighting up the stage," which a majority of people think is common knowledge, and grow as one area in art, lighting designers must understand the intentions of the choreographer and the work with creativity and artistry they must consider light and color as an aesthetic language in order to heighten the effects of the work and allow it to partake as one element of work creation, so that lighting will be treated as a form of art.

Exploring the Theoretical Trends of an Integrated Environmental Design (통합적 환경설계 이론 기초 연구)

  • Ahn, Myung-June;Pae, Jeong-Hann
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.2
    • /
    • pp.14-25
    • /
    • 2009
  • We live in an age which is exponentially growing as the knowledge paradigm is changing. New sites are subject to contemporary landscape architecture function as "fields" in which this hybrid aspect is both actively practiced and becoming a catalyst for change in the area of landscape architecture. With this as its background, this study attempts to deal with how the aspect of integration in environmental design is manifested. For this purpose, the tendencies for the discussion of integration in various fields of practice were examined: planning theories, urban theories, architecture, public environment, engineering, and landscape architecture. As yet, the discussions of interdisciplinary integration, which occur in practice in these respective fields, mainly tend to be oriented toward the effective implementation of the merits of other related fields. Seen from these examples of practice, integrated design approaches can be found in the following three aspects: design objects, respective professional areas, and methodologies of approaches and design. In terms of design objects, the positions of individual design subjects present themselves as most obvious, and integration or combination of the physical targets that come to exist through design can be easily seen. Most examples of integration turn out to be this, in almost every case of which the theme and the target of expression are integrated via a small number of certain methods. In terms of professional areas, what can be mainly evidenced is how the individual subject acts when the subject designs. The strong points of professionals from each field seem to create synergy, achieving through integration optimum results. In terms of methodologies of approaches and design, there are attempts to create integrated approaches as ways of effective decision-making, in which case the integration of all of the interest parties is of primary concern. As yet, few instances have been found in which integrated design has had enough strength to be seen as a concrete design methodology based on practical examples. However, it is encouraging that theoretical approaches and the necessity for integrated design have been identified from multiple perspectives, and that a practical movement such as landscape urbanism has come into active being. The authors of this study find this point in time to be ripe for discussions on integrated practices in terms of environmental design, on the basis of the synthetic approaches mentioned above.

Keyword Network Analysis for Technology Forecasting (기술예측을 위한 특허 키워드 네트워크 분석)

  • Choi, Jin-Ho;Kim, Hee-Su;Im, Nam-Gyu
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.227-240
    • /
    • 2011
  • New concepts and ideas often result from extensive recombination of existing concepts or ideas. Both researchers and developers build on existing concepts and ideas in published papers or registered patents to develop new theories and technologies that in turn serve as a basis for further development. As the importance of patent increases, so does that of patent analysis. Patent analysis is largely divided into network-based and keyword-based analyses. The former lacks its ability to analyze information technology in details while the letter is unable to identify the relationship between such technologies. In order to overcome the limitations of network-based and keyword-based analyses, this study, which blends those two methods, suggests the keyword network based analysis methodology. In this study, we collected significant technology information in each patent that is related to Light Emitting Diode (LED) through text mining, built a keyword network, and then executed a community network analysis on the collected data. The results of analysis are as the following. First, the patent keyword network indicated very low density and exceptionally high clustering coefficient. Technically, density is obtained by dividing the number of ties in a network by the number of all possible ties. The value ranges between 0 and 1, with higher values indicating denser networks and lower values indicating sparser networks. In real-world networks, the density varies depending on the size of a network; increasing the size of a network generally leads to a decrease in the density. The clustering coefficient is a network-level measure that illustrates the tendency of nodes to cluster in densely interconnected modules. This measure is to show the small-world property in which a network can be highly clustered even though it has a small average distance between nodes in spite of the large number of nodes. Therefore, high density in patent keyword network means that nodes in the patent keyword network are connected sporadically, and high clustering coefficient shows that nodes in the network are closely connected one another. Second, the cumulative degree distribution of the patent keyword network, as any other knowledge network like citation network or collaboration network, followed a clear power-law distribution. A well-known mechanism of this pattern is the preferential attachment mechanism, whereby a node with more links is likely to attain further new links in the evolution of the corresponding network. Unlike general normal distributions, the power-law distribution does not have a representative scale. This means that one cannot pick a representative or an average because there is always a considerable probability of finding much larger values. Networks with power-law distributions are therefore often referred to as scale-free networks. The presence of heavy-tailed scale-free distribution represents the fundamental signature of an emergent collective behavior of the actors who contribute to forming the network. In our context, the more frequently a patent keyword is used, the more often it is selected by researchers and is associated with other keywords or concepts to constitute and convey new patents or technologies. The evidence of power-law distribution implies that the preferential attachment mechanism suggests the origin of heavy-tailed distributions in a wide range of growing patent keyword network. Third, we found that among keywords that flew into a particular field, the vast majority of keywords with new links join existing keywords in the associated community in forming the concept of a new patent. This finding resulted in the same outcomes for both the short-term period (4-year) and long-term period (10-year) analyses. Furthermore, using the keyword combination information that was derived from the methodology suggested by our study enables one to forecast which concepts combine to form a new patent dimension and refer to those concepts when developing a new patent.