• Title/Summary/Keyword: knockout mice

Search Result 215, Processing Time 0.029 seconds

Ginsenoside Rg5 promotes wound healing in diabetes by reducing the negative regulation of SLC7A11 on the efferocytosis of dendritic cells

  • Wei Xia;Zongdong Zhu;Song Xiang;Yi Yang
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.784-794
    • /
    • 2023
  • Background: ginsenoside Rg5 is a rare ginsenoside with known hypoglycemic effects in diabetic mice. This study aimed to explore the effects of ginsenoside Rg5 on skin wound-healing in the Leprdb/db mutant (db/db) mice (C57BL/KsJ background) model and the underlying mechanisms. Methods: Seven-week-old male C57BL/6J, SLC7A11-knockout (KO), the littermate wild-type (WT), and db/db mice were used for in vivo and ex vivo studies. Results: Ginsenoside Rg5 provided through oral gavage in db/db mice significantly alleviated the abundance of apoptotic cells in the wound areas and facilitated skin wound healing. 50 μM ginsenoside Rg5 treatment nearly doubled the efferocytotic capability of bone marrow-derived dendritic cells (BMDCs) from db/db mice. It also reduced NF-κB p65 and SLC7A11 expression in the wounded areas of db/db mice dose-dependently. Ginsenoside Rg5 physically interacted with SLC7A11 and suppressed the cystine uptake and glutamate secretion of BMDCs from db/db and SLC7A11-WT mice but not in BMDCs from SLC7A11-KO mice. In BMDCs and conventional type 1 dendritic cells (cDC1s), ginsenoside Rg5 reduced their glycose storage and enhanced anaerobic glycolysis. Glycogen phosphorylase inhibitor CP-91149 almost abolished the effect of ginsenoside Rg5 on promoting efferocytosis. Conclusion: ginsenoside Rg5 can suppress the expression of SLC7A11 and inhibit its activity via physical binding. These effects collectively alleviate the negative regulations of SLC7A11 on anaerobic glycolysis, which fuels the efferocytosis of dendritic cells. Therefore, ginsenoside Rg5 has a potential adjuvant therapeutic reagent to support patients with wound-healing problems, such as diabetic foot ulcers.

TRPC4 Is an Essential Component of the Nonselective Cation Channel Activated by Muscarinic Stimulation in Mouse Visceral Smooth Muscle Cells

  • Lee, Kyu Pil;Jun, Jae Yeoul;Chang, In-Youb;Suh, Suk-Hyo;So, Insuk;Kim, Ki Whan
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.435-441
    • /
    • 2005
  • Classical transient receptor potential channels (TRPCs) are thought to be candidates for the nonselective cation channels (NSCCs) involved in pacemaker activity and its neuromodulation in murine stomach smooth muscle. We aimed to determine the role of TRPC4 in the formation of NSCCs and in the generation of slow waves. At a holding potential of -60 mV, $50{\mu}M$ carbachol (CCh) induced $I_{NSCC}$ of amplitude [$500.8{\pm}161.8pA$ (n = 8)] at -60 mV in mouse gastric smooth muscle cells. We investigated the effects of commercially available antibodies to TRPC4 on recombinant TRPC4 expressed in HEK cells and CCh-induced NSCCs in gastric smooth muscle cells. TRPC4 currents in HEK cells were reduced from $1525.6{\pm}414.4pA$ (n = 8) to $146.4{\pm}83.3pA$ (n = 10) by anti-TRPC4 antibody and $I_{NSCC}$ amplitudes were reduced from $230.9{\pm}36.3pA$ (n = 15) to $49.8{\pm}11.8pA$ (n = 9). Furthermore, $I_{NSCC}$ in the gastric smooth muscle cells of TRPC4 knockout mice was only $34.4{\pm}10.4pA$ (n = 8) at -60 mV. However, slow waves were still present in the knockout mice. Our data suggest that TRPC4 is an essential component of the NSCC activated by muscarinic stimulation in the murine stomach.

Hypoxia-Induced Endothelial Progenitor Cell Function Is Blunted in Angiotensinogen Knockout Mice

  • Choi, Jin-Hwa;Nguyen, Minh-Phuong;Lee, Dongjin;Oh, Goo-Taeg;Lee, You-Mie
    • Molecules and Cells
    • /
    • v.37 no.6
    • /
    • pp.487-496
    • /
    • 2014
  • Angiotensinogen (AGT), the precursor of angiotensin I, is known to be involved in tumor angiogenesis and associated with the pathogenesis of coronary atherosclerosis. This study was undertaken to determine the role played by AGT in endothelial progenitor cells (EPCs) in tumor progression and metastasis. It was found that the number of EPC colonies formed by AGT heterozygous knockout ($AGT^{+/-}$) cells was less than that formed by wild-type (WT) cells, and that the migration and tube formation abilities of $AGT^{+/-}$ EPCs were significantly lower than those of WT EPCs. In addition, the gene expressions of vascular endothelial growth factor (VEGF), Flk1, angiopoietin (Ang)-1, Ang-2, Tie-2, stromal derived factor (SDF)-1, C-X-C chemokine receptor type 4 (CXCR4), and of endothelial nitric oxide synthase (eNOS) were suppressed in $AGT^{+/-}$ EPCs. Furthermore, the expressions of hypoxia-inducible factor (HIF)-$1{\alpha}$and $-2{\alpha}$ were downregulated in $AGT^{+/-}$ early EPCs under hypoxic conditions, suggesting a blunting of response to hypoxia. Moreover, the activation of Akt/eNOS signaling pathways induced by VEGF, epithelial growth factor (EGF), or SDF-$1{\alpha}$ were suppressed in $AGT^{+/-}$ EPCs. In $AGT^{+/-}$ mice, the incorporation of EPCs into the tumor vasculature was significantly reduced, and lung tumor growth and melanoma metastasis were attenuated. In conclusion, AGT is required for hypoxia-induced vasculogenesis.

Comprehensive MicroRNAome Analysis of the Relationship Between Alzheimer Disease and Cancer in PSEN Double-Knockout Mice

  • Ham, Suji;Kim, Tae Kyoo;Ryu, Jeewon;Kim, Yong Sik;Tang, Ya-Ping;Im, Heh-In
    • International Neurourology Journal
    • /
    • v.22 no.4
    • /
    • pp.237-245
    • /
    • 2018
  • Purpose: Presenilins are functionally important components of ${\gamma}$-secretase, which cleaves a number of transmembrane proteins. Manipulations of PSEN1 and PSEN2 have been separately studied in Alzheimer disease (AD) and cancer because both involve substrates of ${\gamma}$-secretase. However, numerous clinical studies have reported an inverse correlation between AD and cancer. Interestingly, AD is a neurodegenerative disorder, whereas cancer is characterized by the proliferation of malignant cells. However, this inverse correlation in the PSEN double-knockout (PSEN dKO) mouse model of AD has been not elucidated, although doing so would shed light onto the relationship between AD and cancer. Methods: To investigate the inverse relationship of AD and cancer under conditions of PSEN loss, we used the hippocampus of 7-month-old and 18-month-old PSEN dKO mice for a microRNA (miRNA) microarray analysis, and explored the tumorsuppressive or oncogenic role of differentially-expressed miRNAs. Results: The total number of miRNAs that showed changes in expression level was greater at 18 months of age than at 7 months. Most of the putative target genes of the differentially-expressed miRNAs involved Cancer pathways. Conclusions: Based on literature reviews, many of the miRNAs involved in Cancer pathways were found to be known tumorsuppressive miRNAs, and their target genes were known or putative oncogenes. In conclusion, the expression levels of known tumor-suppressive miRNAs increased at 7 and 18 months, in the PSEN dKO mouse model of AD, supporting the negative correlation between AD and cancer.

Role of TAZ in Lysophosphatidic Acid-Induced Migration and Proliferation of Human Adipose-Derived Mesenchymal Stem Cells

  • Mo, Won Min;Kwon, Yang Woo;Jang, Il Ho;Choi, Eun Jung;Kwon, Sang Mo;Kim, Jae Ho
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.354-361
    • /
    • 2017
  • Transcriptional co-activator with a PDZ-binding motif (TAZ) is an important factor in lysophosphatidic acid (LPA)-induced promotion of migration and proliferation of human mesenchymal stem cells (MSCs). The expression of TAZ significantly increased at 6 h after LPA treatment, and TAZ knockdown inhibited the LPA-induced migration and proliferation of MSCs. In addition, embryonic fibroblasts from TAZ knockout mice exhibited the reduction in LPA-induced migration and proliferation. The LPA1 receptor inhibitor Ki16425 blocked LPA responses in MSCs. Although TAZ knockdown or knockout did not reduce LPA-induced phosphorylation of ERK and AKT, the MEK inhibitor U0126 or the ROCK inhibitor Y27632 blocked LPA-induced TAZ expression along with the reduction in the proliferation and migration of MSCs. Our data suggest that TAZ is an important mediator of LPA signaling in MSCs in the downstream of MEK and ROCK signaling.

Genetic Causes in Male Infertility of Human (남성 불임의 유전성 요인)

  • 김의수;이건수
    • Development and Reproduction
    • /
    • v.3 no.1
    • /
    • pp.1-13
    • /
    • 1999
  • It is believed that genetic defects make an important contribution to male infertility. Since spermatogenesis is such a complex process, it seems inevitable that many genes are involved in controlling the entire development of germ cells. Genes for infertility, however, are considered to be only those which are defected in the reproduction ability, but normal in other functions. Microdeletions of the Y chromosome have been observed frequently in infertile males. At least two genes, RBM and DAZ, are known to present in the loci where microdeletions occur frequently. A number of autosomal genes were also considered as candidates of infertility genes, based on phenotypes of knockout mice that were deficient of these genes.

  • PDF

Statistical Analysis of Gene Expression in Innate Immune Responses: Dynamic Interactions between MicroRNA and Signaling Molecules

  • Piras, Vincent;Selvarajoo, Kumar;Fujikawa, Naoki;Choi, Sang-Dun;Tomita, Masaru;Giuliani, Alessandro;Tsuchiya, Masa
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.107-112
    • /
    • 2007
  • MicroRNAs (miRNAs) are known to negatively control protein-coding genes by binding to messenger RNA (mRNA) in the cytoplasm. In innate immunity, the role of miRNA gene silencing is largely unknown. In this study, we performed microarray-based experiments using lipopolysaccharide (LPS)-stimulated macrophages derived from wild-type, MyD88 knockout (KO), TRIF KO, and MyD88/TRIF double KO mice. We employed a statistical approach to determine the importance of the commonality and specificity of miRNA binding sites among groups of temporally co-regulated genes. We demonstrate that both commonality and specificity are irrelevant to define a priori groups of co-down regulated genes. In addition, analyzing the various experimental conditions, we suggest that miRNA regulation may not only be a late-phase process (after transcription) but can also occur even early (1h) after stimulation in knockout conditions. This further indicates the existence of dynamic interactions between miRNA and signaling molecules/transcription factor regulation; this is another proof for the need of shifting from a 'hard-wired' paradigm of gene regulation to a dynamical one in which the gene co-regulation is established on a case-by-case basis.

EFFECT OF THE NUCLEAR FACTOR I-C ON THE FORMATION OF HERTWIG'S EPITHELIAL ROOT SHEATH DURING ROOT DEVELOPMENT (Nuclear factor I-C가 치근발생 과정에서 Hertwig's 상피초 형성에 미치는 영향)

  • Shin, In-Cheol;Park, Joo-Cheol;Jeong, Moon-Jin;Oh, Hyun-Ju;Park, Sun-Hwa;Lee, Chang-Seop;Kim, Heung-Joong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.3
    • /
    • pp.576-583
    • /
    • 2005
  • Tooth formation is a complex developmental process that is mediated through a series of reciprocal epithelial-mesenchymal interactions. Several signal pathways and transcription factors have been implicated in regulating molar crown development, but relatively little is known about the regulation of root development. It was reported that NFI-C knockout mice showed abnormal root formation with normal crown. The aims of this study are to elucidate how the NFI-C regulate the determine of root shape and odontoblasts differentiation. We carried out immunohistochemistry using cytokeratin to investigate the role of Hertwig's epithelial root sheath and DSPP mRNA in-situ hybridization to conform the nature of root dentin during root development in NFI-C knockout mice. Cytokeratin reacted with all the HERS cells and the continuity of cytokeratin positive cells between the HERS cells and enamel epithelium was lost in the cervical region both wild and K/O types. After root dentin deposition cytokeratin positive-HERS cells showed irregularity and loss of polarity in the cervical region in K/O type. DSPP mRNA was strongly expressed in odontoblasts of crown and root dentin in wild type mice, whereas expression of DSPP mRNA was restricted in odontoblast of crown dentin in the K/O type. During root formation in NFI-C knockout mice, HERS normally grow out of the crown but fail to induce odontoblast differentiation in root portion. These results suggest that NFI-C may play important roles in odontoblast differentiation during root dentin formation.

  • PDF

Predominant $D_1$ Receptors Involvement in the Over-expression of CART Peptides after Repeated Cocaine Administration

  • Hu, Zhenzhen;Oh, Eun-Hye;Chung, Yeon Bok;Hong, Jin Tae;Oh, Ki-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.89-97
    • /
    • 2015
  • The aim of this study was to investigate the involvement of dopaminergic receptors (DR) in behavioral sensitization, as measured by locomotor activity, and the over-expression of cocaine- and amphetamine-regulated transcript (CART) peptides after repeated administration of cocaine in mice. Repeated administrations of cocaine induced behavioral sensitization and CART over-expression in mice. The levels of striatal CART mRNA were significantly increased on the $3^{rd}$ day. CART peptides were over-expressed on the $5^{th}$ day in the striata of behaviorally sensitized mice. A higher proportion of $CART^+$ cells in the cocaine-treated mice were present in the nucleus accumbens (NAc) shell than in the dorsolateral (DL) part of caudate putamen (CP). The concomitant administration of both $D_1R$ and $D_2R$ antagonists, SCH 23390 ($D_1R$ selective) and raclopride ($D_2R$ selective), blocked cocaine induced-behavioral sensitization, CART over-expression, and cyclic adenosine 5'-monophosphate (cAMP)/ protein kinase A (PKA)/phospho-cAMP response element-binding protein (pCREB) signal pathways. SCH 23390 more predominantly inhibited the locomotor activity, CART over-expression, pCREB and PKA activity than raclopride. Cocaine induced-behavioral sensitization was also attenuated in the both $D_1R$ and $D_2R$ knockout (KO) mice, respectively. CART over-expression and activated cAMP/PKA/pCREB signal pathways were inhibited in the $D_1R$-KO mice, but not in the $D_2R$-KO mice. It is suggested that behavioral sensitization, CART over-expression and activated cAMP/PKA/pCREB signal pathways induced by repeated administration of cocaine could be more predominantly mediated by $D_1R$.

Malondialdehyde Level by Ethanol Exposure in Mouse According to the ALDH2 Enzyme Activity

  • Lee, Chung-Jong;Kim, Yong-Dae;Kim, Sung-Hoon;Eom, Sang-Yong;Zhang, Yan Wei;Kim, Heon
    • Biomedical Science Letters
    • /
    • v.14 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Excessive alcohol consumption is associated with increased risks of many diseases including cancer. Individuals who regularly consume excessive quantities of alcohol have a greater risk of developing head and neck cancers such as esophageal, pharyngeal and oral cavity cancers if they are deficient in ALDH2 expression compared to normal populations. We evaluated lipid peroxidation in Aldh2 +/+ and Aldh2 -/- mice after they had been subjected to acute ethanol exposure. Malondialdehyde(MDA) level in liver tissue was evaluated as a biomarker of oxidative lipid peroxidation. Although the ethanol treatment did not increase the hepatic MDA level both in Aldh2 +/+ mice and in Aldh2 -/- mice, the MDA level was significant higher in the Aldh2 -/- mice than in the Aldh2 +/+ group. The MDA level was also significantly correlated with olive tail moment in blood and the level of 8-OHdG in liver tissue. This is a strong evidence to support our hypothesis that oxidative stress is more intense in Aldh2 -/- mice than in Aldh2 +/+ mice. Our results suggest that ALDH2-deficient individuals may be more susceptible than wild-type ALDH2 individuals to ethanol-mediated liver disease, including cancer.

  • PDF