• Title/Summary/Keyword: knee joint

Search Result 1,673, Processing Time 0.033 seconds

Analysis of Joint Moment in the Intact Limb With Uni-Transfemoral Amputee During Level Walking (편측 대퇴절단자의 보행 시 건측 하지 관절 모멘트 분석)

  • Chang, Yun-Hee;Lee, Wan-Hee
    • Physical Therapy Korea
    • /
    • v.15 no.2
    • /
    • pp.64-72
    • /
    • 2008
  • The purpose of this study was to determine the differences in joint moment in the intact limb of uni-transfemoral amputees and to identify the implications of knee osteoarthritis. As an experimental method, three-dimensional gait analysis was performed on 10 uni-transfemoral amputees and 10 healthy males. Kinematics and kinetics at the hip, knee, and ankle joint were calculated. As a statistical method, independent t-tests were conducted to perform a comparison between the transfemoral amputee group and the control group. The results showed that the external knee adduction moment increased in the transfemoral amputee group (.22 Nm/kg) compared with that of the control group (.13 Nm/kg) at terminal stance (p=.008). External knee flexion moment also increased in the transfemoral amputee group (.24 Nm/kg) but this difference was not statistically significant. External hip flexion moment increased in the transfemoral amputee group (1.35 Nm/kg) compared with that of the control group (.45 Nm/kg) at initial stance, and external hip extension moment decreased in the transfemoral amputee group (-.26 Nm/kg) compared with that of the control group (-.76 Nm/kg) at terminal stance. Although external ankle plantarflexion moment of the transfemoral amputee group increased, it was not found to be statistically significant. The results suggest that the intact limb joint moment of the uni-transfemoral amputees during walking can be different from that of healthy subjects. In conclusion, it was found that there is a link between the increase of external knee adduction moment and the prevalence of knee osteoarthritis in uni-transfemoral amputees. This result is expected to provide some objective data for rehabilitation programs related to knee osteoarthritis in transfemoral amputees.

  • PDF

Changes in Knee Joint Loading on Infilled Turf with Different Soccer Cleat Designs (축구화 스터드 형태에 따른 무릎 모멘트의 변화)

  • Park, Sang-Kyoon;Lee, Joong-Sook;Park, Seung-Bum;Stefanyshyn, Darren
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.369-377
    • /
    • 2009
  • The purpose of this study was to determine the relationship between different soccer cleat designs and knee joint moments. Twelve physically active males (mean(SD): age: 26.4(6.2)yrs; height: 176.4(4.1)cm; mass: 74.0 (7.4)kg) were recruited Kinematic and force plate data were collected for all subjects during normal running and a $45^{\circ}$ cutting maneuver, called a v-cut. Both motions were performed at $4.0{\pm}0.2\;m/s$ on infilled artificial turf with three pairs of soccer cleats of different sole plate designs, and one pair of neutral running shoes. Inverse dynamics were used to calculate three dimensional knee joint moments, with repeated measures ANOVA and post hoc paired Student's t-test used to determine significance between shoe conditions. Significant differences were found in the extension moments of the knee for running trials, and for external rotation and adduction moments in the v-cutting trials. Knee moments were greater in v-cut than running, and the traditional soccer cleats (Copa Mondial and World Cup) tended to result in greater knee moments than the Nova runner or TRX soccer cleat. Cleat design was found to influence 3-dimensional knee moments in a v-cut maneuver. In the translational traction test, there were significant differences between all conditions. In the rotational traction test, friction with soccer shoes were greater than friction with running shoes. However, no differences were found between soccer shoes. Higher moments may lead to increased loads and stresses on knee joint structures, and thus, greater injury rates.

Effects of Combined Wedge on Angle and Moment of Ankle and Knee Joint During Gait in Patients With Genu Varus

  • Yang, Hae Sun;Choi, Houng Sik
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.7 no.2
    • /
    • pp.1025-1030
    • /
    • 2016
  • The purpose of this study was to investigate the effects of combined wedge on the range of motion in ankle and knee joint, ankle eversion moment and knee adduction moment, and center of pressure excursion of foot for genu varus among adult men during gait. This study was carried out with 10 adult men for genu varus in a motion analysis laboratory in J university. The subjects of the experiment were measured above 5cm width between the knees on contact of both medial malleolus of ankle while standing. The width of their knees in neutral position was measured without the inversion or eversion of the subtalar joint by the investigator. The subjects of the experiment were ten who were conducted randomly for standard insole, insole with $10^{\circ}$ lateral on rear foot wedge, insole at $10^{\circ}$lateral on rear foot and $5^{\circ}$ medial on fore foot wedge. Before and after intervention, changes on the range of motion in ankle and knee joint, ankle eversion moment and knee adduction moment, and center of pressure excursion were measured. In order to compare analyses among groups; repeated one-way ANOVA and $Scheff{\acute{e}}$ post hoc test were used. As a result, combined wedge group was significantly decreased compared to control wedge group in terms of knee varus angle in mid-stance(p<.05). Combined wedge group was significantly decreased compared to lateral wedge group in terms of ankle eversion moment in whole stance(p<.05). Combined wedge group was significantly decreased compared to lateral wedge group in terms of knee adduction moment in whole stance(p<.05). Combined wedge group was significantly decreased compared to lateral wedge in terms of center of pressure excursion in whole stance(p<.05). The results of this study suggest that combined wedge for genu varus decreased ankle eversion moment and knee adduction moment upon center of pressure excursion. We hypothesize that combined wedge may also be effective in the protection excessive ankle pronation.

A Kinematical Analysis of Side Kick Motion in Taekwondo (태권도 옆차기 동작의 운동학적 분석)

  • Park, Kwang-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.49-63
    • /
    • 2003
  • For this study, four male university Taekwondo players were randomly chosen, between the weight categories of 60Kg and 80Kg. Their side kicks (yeop chagi), which are part of foot techniques, were kinematically analyzed in terms of the time, angle, and angular velocity factors involved with the kicks through the three-dimensional imaging. The results of the analysis are as fellows. 1. Time factor The first phase(preparation) was 0.48sec on average, accounting for 60% of the entire time spent; the second phase(the minimum angle of the knee joint) was 0.21sec on average, taking up 26% of the whole time spent; and the third phase(hitting) was 0.11sec on average, representing 14% of the entire time spent. 2. Angle factor In the first phase(preparation), rotating their bodies along the long axis, the players bended their hip and knee joints a lot, by moving fast in the vertical and horizontal directions, in the second phase(the minimum angle of the knee joint), the players continued to extend their bodies along the vertical axis, while pronating their lower legs and bending their hip and knee joints a lot to reduce the radius of gyration, and in the third phase(hitting), they extended their knee joints greatly so that the angle movements of their lower bodies shifted to circle movements. 3. Angular velocity factor In the first phase(preparation), the angular velocity of the hip and knee joints increased. while moving horizontally and rotating the body along the long axis; in the second phase(the minimum angle of the knee joint), the angular velocity increased by bending the hip and knee joints fast to reduce the rotation radios; and in the third phase(hitting), the angular velocity was found to have increased, by rotating the body along the long axis to increase the angular velocity and shifting the angular momentum of the pronated knee joint to the circular momentum.

Effects of Sensorimotor Training Volume on Recovery of Knee Joint Stability in Patients following Anterior Cruciate Ligament Reconstruction

  • Shim, Jae-Kwang;Choi, Ho-Suk
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • Purpose: The purpose of this study is to examine the effects of sensorimotor training on knee joint stability after anterior cruciate ligament reconstruction. Methods: The subjects were sixteen 16 adults who received anterior cruciate reconstruction by arthroscopy, and underwent sensorimotor training for which was to have them maintenanceain of a standing position with a step Balance ball on the affected side over 30 degrees knee flexion with 100% weight bearing for 15-20 seconds. Before the genuine experiment commenced, the Lysholm scale was had been used to assess functional disorders on the affected knee joint. KT-2000 Arthrometer measurement equipment was used to measure anterior displacement of tibia against to femur before and after the sensorimotor training. Results: There was significant relaxation on the affected side in tibia anterior displacement of the affected and sound sides on in supine position before the sensorimotor training. There was little significant difference in tibia anterior displacement of the affected knee joints on in the supine position before and after the sensorimotor training. The results also showed that there was a reduction in the difference of tibia anterior displacement of the affected knee joints on in the standing position. These results suggest that the effects of sensorimotor training on knee joint stability after anterior cruciate ligament reconstruction is to induce the change of tibia anterior displacement against femur and the variation of muscles activation. Conclusion: The sensorimotor training may contribute to the improvement of joint functional stability in people who are in post-operation state and with orthopedic musculoskelectal injuries.

The impact of joint mobilization with an elastic taping on immediate standing balance in patients with knee osteoarthritis. (무릎 관절염 환자에 대한 관절가동술과 탄력 테이핑 융복합 적용이 즉각적인 기립 균형에 미치는 영향)

  • Park, Shin-Jun;Kim, Dong-Dae
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.7
    • /
    • pp.295-304
    • /
    • 2017
  • The purpose of this study was to identify the immediate effect of the joint mobilization with an elastic taping on standing balance in patients with knee osteoarthritis. Thirty patients with knee osteoarthritis were randomly divided into three groups: a taping group, a joint mobilization group, and a joint mobilization with taping group. A foot pressure platform (Zebris) was used to evaluate standing balance ability, and the sway area, path length and average velocity were measured during eyes open condition and eyes closed condition. All the groups showed a significant improvement in the sway area during eyes closed condition after intervention, and the joint mobilization with taping group revealed significant improvements in the path length and average velocity. There was no significant difference in the standing balance ability among all the groups. Both the joint mobilization and taping method were effective methods for standing balance during eyes closed condition, and it has been found that the convergence of the two interventions had an effect on diverse balance variables. Thus, it is recommended to apply the convergence of the two interventions for patients with knee osteoarthritis.

The Effects of Chronic Ankle Instability on Postural Control during Forward Jump Landing (전방 점프 착지 시 만성 발목 불안정성이 자세 조절에 미치는 영향)

  • Kim, Kew-wan;Jeon, Kyoungkyu;Park, Seokwoo;Ahn, Seji
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 2022
  • Objective: The purpose of this study was to investigate how the chronic ankle instability affects postural control during forward jump landing. Method: 20 women with chronic ankle instability (age: 21.7 ± 1.6 yrs, height: 162.1 ± 3.7 cm, weight: 52.2 ± 5.8 kg) and 20 healthy adult women (age: 21.8 ± 1.6 yrs, height: 161.9 ± 4.4 cm, weight: 52.9 ± 7.2 kg) participated in this study. For the forward jump participants were instructed to stand on two legs at a distance of 40% of their body height from the center of force plate. Participants were jump forward over a 15 cm hurdle to the force plate and land on their non-dominant or affected leg. Kinetic and kinematic data were obtained using 8 motion capture cameras and 1 force plates and joint angle, vertical ground reaction force and center of pressure. All statistical analyses were using SPSS 25.0 program. The differences in variables between the two groups were compared through an independent sample t-test, and the significance level was to p < .05. Results: In the hip and knee joint angle, the CAI group showed a smaller flexion angle than the control group, and the knee joint valgus angle was significantly larger. In the case of ankle joint, the CAI group showed a large inversion angle at all events. In the kinetic variables, the vGRF was significantly greater in the CAI group than control group at IC and mGRF. In COP Y, the CAI group showed a lateral shifted center of pressure. Conclusion: Our results indicated that chronic ankle instability decreases the flexion angle of the hip and knee joint, increases the valgus angle of the knee joint, and increases the inversion angle of the ankle joint during landing. In addition, an increase in the maximum vertical ground reaction force and a lateral shifted center of pressure were observed. This suggests that chronic ankle instability increases the risk of non-contact knee injury as well as the risk of lateral ankle sprain during forward jump landing.