• Title/Summary/Keyword: kinetic equation

Search Result 528, Processing Time 0.03 seconds

Reductive Degradation Kinetics and Pathways of Chlorophenolic Organic Pollutants by Nickel-Coated Zero Valent Iron (니켈로 코팅된 영가금속을 이용한 염소계 페놀화합물의 반응경로 및 반응율 평가)

  • Shin, Seung-Chul;Kim, Young-Hun;Ko, Seok-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.487-493
    • /
    • 2006
  • Reductive dechlorination of chlorophenols by nickel coated iron was investigated to understand the feasibility of using Ni/Fe for the in situ remediation of contaminated groundwater. Zero Valent Iron(ZVI) was amended with Ni(II) ions to form bimetal(Ni/Fe). Dechlorination of five chlorophenol compounds and formation of intermediates were examined using Ni/Fe. Rate constant for each reaction pathway was quantified by the numerical integration of a series of differential rate equation. Experimental results showed that the sequence of hydrodechlorination rate constant was in the order of 2-CP>4-CP>2,4-DCP>2,4,6-TCP>2,6-DCP. The hydrodechlorination pathways for the conversion of each chlorophenol compound involves a full dechlorination to phenol via both concerted and stepwise mechanisms. Reaction pathways and corresponding kinetic rate constants were suggested based on the experiments and numerical simulations.

Applications of Third Order Models in Solvolytic Reaction of Aliphatic Substituted Acyl Derivatives in 2,2,2-Trifluoroethanol-Ethanol Systems

  • Ryu, Zoon-Ha;Lim, Gui-Taek;Bentley, T. William
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1293-1302
    • /
    • 2003
  • Rate constants at various temperatures and activation parameters are reported for solvolyses of acyl chlorides (RCOCl), with R = Me, Et, i-Pr, t-Bu, cyclopentylmethyl, benzyl, thiophenylmethyl, 2-phenylethyl, diphenylmethyl, and phenylthiomethyl in 100% ethanol, 100% 2,2,2-trifluoroethanol (TFE), 80% v/v ethanol/ water and 97% w/w TFE/water. Additional rate constants for solvolyses with R = Me, t-Bu, and $PhCH_2$ are reported for TFE/water and TFE/ethanol mixtures, and for solvolyses with R = t-Bu, and PhCH2 are reported for 1,1,1,3,3,3-hexafluoropropan-2-ol/water mixtures, as well as selected kinetic solvent isotope effects (MeOH/MeOD and TFE). Taft plots show that electron withdrawing groups (EWG) decrease reactivity significantly in TFE, but increase reactivity slightly in ethanol. Correlation of solvent effects using the extended Grunwald-Winstein (GW) equation shows an increasing sensitivity to solvent nucleophilicity for EWG. The effect of solvent stoichiometry in assumed third order reactions is evaluated for TFE/ethanol mixtures, which do not fit well in GW plots for R = Me, and t-Bu, and it is proposed that one molecule of TFE may have a specific role as electrophile; in contrast, reactions of substrates containing an EWG can be explained by third order reactions in which one molecule of solvent (ethanol or TFE) acts as a nucleophile, and a molecule of ethanol acts as a general base catalyst. Isokinetic relationships are also investigated.

Kinetic Studies on the Mechanism of Hydrolysis of 4'-[N-(9-Acridinyl)]-1'-(N-methanesulfonyl)-3'-methoxyquinonediimide (4'-[N-(9-Acridinyl)]-1'-(N-methanesulfonyl)-3'-methoxyquinonediimide의 가수분해 반응메카니즘에 관한 반응속도론적 연구)

  • Kim, Tae Rin;Chung, Dong In;Pyun, Sang Yong
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.12
    • /
    • pp.733-740
    • /
    • 1996
  • The rate constants for the hydrolysis of 4'-[N-(9-acridinyl)]-1'-(N-methanesulfonyl)-3'-methoxyquinonediimide(AMQD) were determined by ultraviolet visible spectrophotometer in water at $25^{\circ}C.$ The rate equation which could be applied over wide pH ranges were obtained. On the basis of pH-rate profile, Bronsted plot, hydrolysis product analysis, general base catalysis and substituent effect, the plausible hydrolysis mechanism was proposed: Below pH 3.00, the hydrolysis reaction was proceeded by the attack of water to 4'-position of quinonoid after protonation at nitrogen of acridinyl and between pH 3.00 and 9.00, the addition of water and hydroxide occurred competitively. However, above pH 9.00, the rate constants were dependent upon only the concentration of hydroxide ion.

  • PDF

Kinetic Studies on the Nucleophilic Addition of 3-Mercaptopropionic Acid to ${\beta},\;{\beta}$-Diethoxycarbonylstyrene Derivatives (${\beta},\;{\beta}$-Diethoxycarbonylstyrene 유도체에 대한 3-Mercaptopropionic Acid의 친핵성첨가반응에 관한 반응속도론적 연구)

  • Tae-Rin Kim;Yun-Chung Choi;Myung-Sook Chung
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.127-134
    • /
    • 1989
  • The rate constants of the nucleophilic addition reaction of 3-mercaptopropionic acid to the ${\beta},\;{\beta}$-diethoxycarbonylstryene derivatives (H, p-OCH$_3$, 3,4,5-(OCH$_3)_3$, 3,4-methylenedioxy) were determined by ultraviolet spectrophotometry, and rate equation which could be applied over a wide pH range was obtained. On the basis of pH-rate profile and the presence of general base catalysis, a plausible mechanism of this addition reaction was propound:Below pH 6.0 the reaction was initiated by the addition of neutral 3-mercaptopropionic acid molecule, and in the range of pH 6.0∼8.0, a neutral 3-mercaptopropionic acid molecule and a sulfide anion competitively attacked to the double bond. Above pH 8.0, the reaction proceeded through the addition of a sulfide anion.

  • PDF

Rates and Mechanism of the Reduction of Vanadium(V) by Benzyl Alcohol in Aqueous Dimethylformamide (DMF 수용매에서 벤질알코올에 의한 바나듐(V)의 환원반응속도와 메카니즘)

  • Chang-Su Kim;Woo-Sik Lee
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.179-185
    • /
    • 1988
  • The reaction of VO_2\;^+$ with benzyl alcohol in perchloric acid and aqueous dimethylformamide leads to the formation of $VO^{2+}$ and benzaldehyde. The products, $VO^{2+}$ and benzaldehyde, are identified by infrared spectroscopy and gas chromatography. Kinetic studies on the reaction of VO_2\;^+$ with benzyl alcohol have been carried out using visible spectroscopy. The empirical rate equation can be expressed as $-d[VO_2\;^+]/dt=2\{\\{k_O+k_H[HClO_4]\}\[VO_2\;^+][C_6H_5CH_2OH]$ The rate determining step for the reaction is the process for the formation of $VO^{2+}$ and $C_6H_5CHOH$. The activation parameters are ${\Delta}H^{\neq}=13.32{\pm}1.73\;kcalmol^{-1}$ and ${\Delta}S^{\neq}=-31.02{\pm}0.09\;calmol^{-1}K^{-1}$ for the oxidation of benzyl alcohol in aqueous dimethylformamide.

  • PDF

Saturated Hydraulic Conductivity of Surface Seals Estimated from Computed Tomography-Measured Porosity (고해상도 X-ray CT 를 이용한 토양표면 피막의 공극율 및 포화수리전도도 측정)

  • Lee, Sang-Soo;Gantzer, C.J.;Thompson, A.L.;Anderson, S.H.;Ketchum, R.A.;Ok, Yong-Sik
    • 한국환경농학회:학술대회논문집
    • /
    • 2011.07a
    • /
    • pp.207-222
    • /
    • 2011
  • Relationships between soil saturated hydraulic conductivity ($K_s$) and porosity (${\phi}$) have been developed over many years; however, use of these relationships for evaluating rain-induced seals is limited mainly because of difficulties in estimating seal pore-size characteristics. The objectives of this study were to evaluate the $K_s$ of soil surface seals over a range of thicknesses, where seal thickness was determined using a High-Resolution-Computed-Tomography (HRCT) scanner, and to investigate relationships between $K_s$ and ${\phi}$ of developing seals in samples with equivalent diameters (e.d.) ${\geq}15\;{\mu}m$. A Mexico silt loam soil was packed to a bulk density (${\rho}_b$) of $1.1\;Mg\;m^{-3}$ in cylinders 160-mm i.d. by 160-mm long and subjected to $61-mm\;h^{-1}$ simulated rainfall having a kinetic energy (KE) of $25\;J\;m^{-2}\;min^{-1}$ for 7.5, 15, 30, and 60 min to create a range in seal development. Thicknesses of the seal layers were determined by analysis of HRCT images of seals. The $K_s$ values of the seals were estimated using an effective $K_s$ value ($K_{s-eff}$). The $K_s-{\phi}$ relationship was described by a Kozeny and Carmen equation, $K_s=B{\phi}^n$; where B and n are empirical constants and n = 31. This approach explained 86% of the variation between $K_s$ and ${\phi}$ within the soil seals. Knowledge of surface seal information and hydraulic conductivity can provide useful information to use in management of sites prone to sealing formation.

  • PDF

Kinetic Studies on Cooking of Naked and Covered Barley (쌀 보리 및 겉 보리 취반에 대한 역학적 연구)

  • Kim, Hae-Ran;Kim, Sung-Kon;Cheigh, Hong-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.122-125
    • /
    • 1980
  • The mechanism of cooking barlay (naked and covered barley) was investigated. Cooking properties of both naked and covered barley were similar. At higher cooking temperature of above $110^{\circ}C$, a browning reaction occurred and no terminal point of cooking was observed. The cooking rate followed the equation of a first-order reaction. The activation energies of cooking temperatures below $100^{\circ}C$ and above $100^{\circ}C$ were about 19,500 and 9,500 cal/mole, respectively. The cooking process of barley comprised two mechanisms: At temperatures below $100^{\circ}C$ the cooking rate is controlled by the reaction rate of barley constituents with water, and at temperatures above $100^{\circ}C$, it is controlled by the rate of diffusion of water through the cooked portion toward the interface of uncooked core in which the reaction is occurring.

  • PDF

Cinnamic Acid Derivatives V. the Kinetics and Mechanism of the Hydrolysis of Cinnamenylisophorone Derivatives (신남산 유도체 V. Cinnamenylisophorone 유도체의 가수분해 반응에 대한 메카니즘과 그 반응속도론적 연구)

  • Lee, Ki-Chang;Yun, Cheol-Hun;Ryu, Jung-Wook;Lee, Seok-Woo;Jung, Duk-Chal
    • Journal of the Korean Applied Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.161-167
    • /
    • 1991
  • The kinetics of hydrolysis of cinnamenylisophorone derivatives (${rho}-H,\;{rho}-Br,\;P-Cl,\;{rho}-OCH_3$) was investigated using ultraviolet spectrophotometry in 20%(v/v) dicxane-$H_2O$ at 25$^{\circ}C$. A rate equation which can be applied over wide pH range (pH $1.0{\sim}13.0$) was obtained. In order to investigate the substituent effects on cinnarnenylisophorone derivatives, Hammett constant was plotted. As the result, the rate of hydrolysis of cinnamenylisophorone derivatives was facilitated by electron donating group. Final products of the hydrolysis were benzaldehyde and isophorone, From the measurement of reaction rate constant according to pH changes, substituent effect, and final products, it was found that the hydrolysis of cinnarnenylisophorone derivatives was initiated by the neutral $H_2O$ molecule which does not dissociated at below pH 9.0, and in the range of pH $9.0{\sim}11.0$ this reaction occurs by $H_2O$ or hydroxide ion competitively, but proceeded by the hydroxide ion above pH 11.0. On the basis of this kinetic study, the reaction mechanism of the hydrolysis of cinnamenylisophorone derivatives was proposed.

Crystallization Behavior and Kinetics of Cu-Zr-Al-Be Bulk Metallic Glass (Cu-Zr-Al-Be 비정질합금의 결정화거동 및 속도론)

  • Kim, Yu-Chan;Fleury, Eric;Seok, Hyun-Kwang;Cha, Pil-Ryung;Lee, Jin-Kyu;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.338-344
    • /
    • 2008
  • The crystallization kinetics of the $Cu_{43}Zr_{43}Al_7Be_7$ bulk metallic glass were studied by differential scanning calorimetry(DSC) in the continuous heating and isothermal annealing modes. Only one major peak could be detected on the DSC traces of $Cu_{43}Zr_{43}Al_7Be_7$ bulk amorphous alloy, and the activation energy for crystallization corresponding to the peak determined by the Kissinger method was resulted of 239 kJ/mol. The isothermal kinetic, analyzed by the Johnson-Mehl-Avrami equation yielded values for the Avrami exponents in the range 1.69 to 2.37, which implied a crystallization governed by a three-dimensioned growth. Primary phases were essentially the cubic structure CuZr together with the $Cu_{10}Zr_7$ phase. At higher temperature, the CuZr disappeared while the $Cu_{10}Zr_7$ became predominant. After long term annealing at 731 K, the phases were $Cu_{10}Zr_7$, $Cu_2ZrAl$ and $Al_3Zr_5$.

Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates

  • Esmaeilzadeh, Mostafa;Golmakani, Mohammad Esmaeil;Kadkhodayan, Mehran;Amoozgar, Mohammadreza;Bodaghi, Mahdi
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.151-163
    • /
    • 2021
  • The main target of this study is to investigate nonlinear transient responses of moving polymer nano-size plates fortified by means of Graphene Platelets (GPLs) and resting on a Winkler-Pasternak foundation under a transverse pressure force and a temperature variation. Two graphene spreading forms dispersed through the plate thickness are studied, and the Halpin-Tsai micro-mechanics model is used to obtain the effective Young's modulus. Furthermore, the rule of mixture is employed to calculate the effective mass density and Poisson's ratio. In accordance with the first order shear deformation and von Karman theory for nonlinear systems, the kinematic equations are derived, and then nonlocal strain gradient scheme is used to reflect the effects of nonlocal and strain gradient parameters on small-size objects. Afterwards, a combined approach, kinetic dynamic relaxation method accompanied by Newmark technique, is hired for solving the time-varying equation sets, and Fortran program is developed to generate the numerical results. The accuracy of the current model is verified by comparative studies with available results in the literature. Finally, a parametric study is carried out to explore the effects of GPL's weight fractions and dispersion patterns, edge conditions, softening and hardening factors, the temperature change, the velocity of moving nanoplate and elastic foundation stiffness on the dynamic response of the structure. The result illustrates that the effects of nonlocality and strain gradient parameters are more remarkable in the higher magnitudes of the nanoplate speed.