Cu-Zr-Al-Be 비정질합금의 결정화거동 및 속도론

Crystallization Behavior and Kinetics of Cu-Zr-Al-Be Bulk Metallic Glass

  • 김유찬 (한국과학기술연구원 재료기술연구본부) ;
  • 에릭플러리 (한국과학기술연구원 재료기술연구본부) ;
  • 석현광 (한국과학기술연구원 재료기술연구본부) ;
  • 차필령 (국민대학교 신소재공학부) ;
  • 이진규 (한국생산기술연구원 신소재본부) ;
  • 이재철 (고려대학교 신소재공학과)
  • Kim, Yu-Chan (Division of Materials Science and Engineering, Korea Institute of Science and Technology) ;
  • Fleury, Eric (Division of Materials Science and Engineering, Korea Institute of Science and Technology) ;
  • Seok, Hyun-Kwang (Division of Materials Science and Engineering, Korea Institute of Science and Technology) ;
  • Cha, Pil-Ryung (Division of Materials Science and Engineering, Kookmin University) ;
  • Lee, Jin-Kyu (Division of Materials Science and Engineering, Kookmin University) ;
  • Lee, Jae-Chul (Advanced Material Division, Korea Institute of Industrial Technology)
  • 투고 : 2008.02.28
  • 발행 : 2008.06.22

초록

The crystallization kinetics of the $Cu_{43}Zr_{43}Al_7Be_7$ bulk metallic glass were studied by differential scanning calorimetry(DSC) in the continuous heating and isothermal annealing modes. Only one major peak could be detected on the DSC traces of $Cu_{43}Zr_{43}Al_7Be_7$ bulk amorphous alloy, and the activation energy for crystallization corresponding to the peak determined by the Kissinger method was resulted of 239 kJ/mol. The isothermal kinetic, analyzed by the Johnson-Mehl-Avrami equation yielded values for the Avrami exponents in the range 1.69 to 2.37, which implied a crystallization governed by a three-dimensioned growth. Primary phases were essentially the cubic structure CuZr together with the $Cu_{10}Zr_7$ phase. At higher temperature, the CuZr disappeared while the $Cu_{10}Zr_7$ became predominant. After long term annealing at 731 K, the phases were $Cu_{10}Zr_7$, $Cu_2ZrAl$ and $Al_3Zr_5$.

키워드

과제정보

연구 과제 주관 기관 : 과학기술부

참고문헌

  1. A. Peker and W. L. Johnson, Appl. Phys. Lett. 63, 2342 (1993) https://doi.org/10.1063/1.110520
  2. L. E. Tanner and R. Ray, Scrip. Metall. 11, 783 (1977) https://doi.org/10.1016/0036-9748(77)90076-X
  3. D. E. Polk, A. Calka and B. C. Giessen, Acta Metall. 26, 1097 (1978) https://doi.org/10.1016/0001-6160(78)90137-2
  4. A. Inoue, T. Masumoto, C. Suryanarayana and A. Hoshi, J. Physique 41, 758 (1980)
  5. T. Zhang, A. Inoue and T. masumoto, Mater. Sci. Eng. A181/A182, 131 (1994)
  6. F. Spaepen and A. I. Tub, in Amorphous Metallic Alloys(F. E. Luborsky) p.9, p.187 Butterworths, London (1983)
  7. Y. C. Kim, J. H. Na, J. M. Park, D. H. Kim, J. K. Lee and W. T. Kim. Appl. Phys. Lett. 83, 3093 (2003) https://doi.org/10.1063/1.1616198
  8. S. Venkataraman, J. Eckert, L. Schultz and D.J. Sordelet, J. Alloys Comp. 434-435, 203 (2007) https://doi.org/10.1016/j.jallcom.2006.08.140
  9. S. O. Park, J. C. Lee, D. S. Sung, D. H. Kim, E. Fleury and Y. C. Kim, Mater. Sci. & Eng. A449-451, 561 (2007)
  10. A. Inoue, N. Nishiyama and T. Matsuda, Mater. Trans. JIM. 37, 181 (1996) https://doi.org/10.2320/matertrans1989.37.181
  11. E. S. Park, H. G. Kang, W. T. Kim and D. H. Kim, J. Non- Cryst. Solids 298, 15 (2002) https://doi.org/10.1016/S0022-3093(01)01047-X
  12. A. Inoue, T. Zhang and A. Takeuchi, Appl. Phys. Lett. 71, 464 (1997) https://doi.org/10.1063/1.119580
  13. Y. C. Kim, W. T. Kim and D. H. Kim, Mater. Trans. JIM. 42, 1243 (2002)
  14. J. K. Lee, S. H. Kim, S. Yi, W. T. Kim and D. H. Kim,Mater. Trans. JIM. 41, 592 (2001)
  15. K. Amiya, N. Nishiyama, A. Inoue and T. Masumoto, Mater. Sci. Eng. A179-180, 692(1994)
  16. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Acta Mater. 49, 2645 (2001) https://doi.org/10.1016/S1359-6454(01)00181-1
  17. A. Inoue and W. Zhang, Mater. Trans. JIM 43, 2921 (2002) https://doi.org/10.2320/matertrans.43.2921
  18. Y. C. Kim, J. C. Lee, P. R. Cha, J. P. Ahn and E. Fleury, Mater. Sci. & Eng. A437, 248 (2006)
  19. H. J. Chang, E. S. Park, Y. C. Kim and D. H. Kim, Mater. Sci & Eng. A406, 119 (2005)
  20. H. E. Kissinger, Analytical Chemistry 29, 1702 (1957) https://doi.org/10.1021/ac60131a045
  21. S. W. Lee, C. M. Lee, S. W. Che, Y. C. Kim and J. C. Lee, J. Kor. Inst. Met. & Mater. 43, 337 (2005)
  22. M. Avrami, J. Chem. Phys. 7, 1103 (1939) https://doi.org/10.1063/1.1750380
  23. J. W. Christian, The Theory of Transformation in Metals and Alloys, Pergamon Press, London (1965)
  24. A. Calka and A. P. Radinski, J. Mater. Res. 3, 59 (1985) https://doi.org/10.1557/JMR.1988.0059
  25. S. Ranganathan and M. V. Heimendahl, J. Mater. Sci. 15, 1131 (1980) https://doi.org/10.1007/BF00551801
  26. J.K. Lee, G. Choi, W.T. Kim and D.H. Kim, J.Mater.Res. 16, 1311 (2001) https://doi.org/10.1557/JMR.2001.0183