• Title/Summary/Keyword: kinetic equation

Search Result 530, Processing Time 0.021 seconds

Dynamic Extinction of Solid Propellants by Depressurization of Combustion Chamber (연소실 압력 강하에 의한 고체 추진제의 동적 소화)

  • Jeong, Ho-Geol;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.91-97
    • /
    • 2002
  • Dynamic extinction of solid propellants subjected to rapid pressure drop was studied with the aid of energy equation of condensed phase and flame model in gas phase. It is found that the total residence time($\tau_\gamma$) which measures the residing time of fuel in the reaction zone may play a crucial role in determining the dynamic response of the combustuion to extinction. Residence time was modeled by various combinations of diffusion and chemocal kinetic time scale. Effect of pressure history coupled with chamber volume on the extinction response was also performed and was found that dynamic extinction is more susceptible in a confined chamber than in open geometry. And, dynamic extinction was revealed to be affected profoundly by diffysion time scale rather than chemical kinetic time scale.

Mechanism of Intercalation Compounds in Graphite with Hydrogen Sulfate (I. Study of Intermediate Phase between 2 Stage and 1 Stage in Graphite Hydrogen Sulfate with Anodic Oxidation) (흑연에 황산을 Intercalation 시킬때의 Mechanism 규명 (I. 전기적 산화방법에 의한 Graphite Salts의 중간상에 관한 연구))

  • 고영신;한경석;이풍헌
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.6
    • /
    • pp.5-8
    • /
    • 1985
  • Graphite has been oxidized to graphite hydrogen sulfate in concentrated $H_2SO_4$. Anodic oxidation and chemical oxidation of graphite in $H_2SO_4$ generally leads to the formation of intercalation compounds of the ionic salt type through incorporation of $H_2SO_4^-$ions and $H_2SO_4$ molecules into the graphite. Several other reactions also accur at various points of the charging cycle. But there is no satisfactory kinetics and mechanism of intercalationin graphite. We have studied them with anodic oxidation and chemical oxidation. We found six distinct phenomena between 2nd stage and 1st stage in chemical oxidation. We examined them in detail by the following in the measurements electrical oxidation. X-ray diffractions UV-Vis spectroscopy density measurements. We could obtained a equation for kinetic according to the reaction rate from this results and mechanism of intercalation between 2nd stage and 1st stage with hydrogen sulfate in graphite. Three thesis were written for the mechanism of intercalation compounds in graphite with hydrogen sulfate ; first thesis is anodic oxidation second thesis is chemical oxidation and definition of transit phase between 2nd etc the third thesis is the kinetic mechanism of intercalation compounds in graphite with Hydrogen sulfate. This thesis is the first paper among three thesis as anodic oxidation.

  • PDF

Preparation and characterization of green adsorbent from waste glass and its application for the removal of heavy metals from well water

  • Rashed, M. Nageeb;Gad, A.A.;AbdEldaiem, A.M.
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.53-71
    • /
    • 2018
  • Waste glass disposal causes environmental problems in the cities. To find a suitable green environmental solution for this problem low cost adsorbent in this study was prepared from waste glass. An effective new green adsorbent was synthesized by hydrothermal treatment of waste glass (WG), followed by acidic activation of its surface by HCl (WGP). The prepared adsorbent was characterized by scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD), and BET surface measurement. The developed adsorbent was used for the removal of heavy metals (Cd, Cu, Fe, Pb and Zn) from well water. Batch experiments were conducted to test the ability of the prepared adsorbent for the removal of Cd, Cu, Fe, Pb and Zn from well water. The experiments of the heavy metals adsorption by adsorbent (WGP) were performed at different metal ion concentrations, solution pH, adsorbent dosage and contact time. The Langmuir and Freundlich adsorption isotherms and kinetic models were used to verify the adsorption performance. The results indicated high removal efficiencies (99-100%) for all the studied heavy metals at pH 7 at constant contact time of 2 h. The data obtained from adsorption isotherms of metal ions at different time fitted well to linear form of the Langmuir sorption equation, and pseudo-second-order kinetic model. Application of the resulted conditions on well water demonstrated that the modified waste glass adsorbent successfully adsorbed heavy metals (Cd, Cu, Fe, Pb and Zn) from well water.

Scaling law in MHD turbulence small-scale dynamo

  • Park, Kiwan;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.74.2-74.2
    • /
    • 2014
  • Magnetohydrodynamics(MHD) dynamo depends on many factors such as viscosity ${\gamma}$, magnetic diffusivity ${\eta}$, magnetic Reynolds number $Re_M$, external driving source, or magnetic Prandtl number $Pr_M$. $Pr_M$, the ratio of ${\gamma}$ to ${\eta}$ (for example, galaxy ${\sim}10^{14}$), plays an important role in small scale dynamo. With the high PrM, conductivity effect becomes very important in small scale regime between the viscous scale ($k_{\gamma}{\sim}Re^{3/4}k_fk_f$:forcing scale) and resistivity scale ($k_{\eta}{\sim}PrM^{1/2}k_{\gamma}$). Since ${\eta}$ is very small, the balance of local energy transport due to the advection term and nonlocal energy transfer decides the magnetic energy spectra. Beyond the viscous scale, the stretched magnetic field (magnetic tension in Lorentz force) transfers the magnetic energy, which is originally from the kinetic energy, back to the kinetic eddies leading to the extension of the viscous scale. This repeated process eventually decides the energy spectrum of the coupled momentum and magnetic induction equation. However, the evolving profile does not follow Kolmogorov's -3/5 law. The spectra of EV (${\sim}k^{-4}$) and EM (${\sim}k^0$ or $k^{-1}$) in high $Pr_M$ have been reported, but our recent simulation results show a little different scaling law ($E_V{\sim}k^{-3}-k^{-4}$, $EM{\sim}k^{-1/2}-k^{-1}$). We show the results and explain the reason.

  • PDF

Removal of Toxic Pollutants from Aqueous Solutions by Adsorption onto Organo-kaolin

  • Sayed Ahmed, S.A.
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.305-313
    • /
    • 2009
  • In this study, the adsorption of toxic pollutants onto cetyltrimethylammonium kaolin (CTAB-Kaolin) is investigated. The organo-kaolin is synthesized by exchanging cetyltrimethylammonium cations (CTAB) with inorganic ions on the surface of kaolin. The chemical analysis, the structural and textural properties of kaolin and CTAB-kaolin were investigated using elemental analysis, FTIR, SEM and adsorption of nitrogen at $-196^{\circ}C$. The kinetic adsorption and adsorption capacity of the organo-kaolin towards o-xylene, phenol and Cu(II) ion from aqueous solution was investigated. The kinetic adsorption data of o-xylene, phenol and Cu(II) are in agreement with a second order model. The equilibrium adsorption data were found to fit Langmuir equation. The uptake of o-xylene and phenol from their aqueous solution by kaolin, CTAB-kaolin and activated carbon proceed via physisorption. The removal of Cu(II) ion from water depends on the surface properties of the adsorbent. Onto kaolin, the Cu(II) ions are adsorbed through cation exchange with $Na^+$. For CTAB-kaolin, Cu(II) ions are mainly adsorbed via electrostatic attraction with the counter ions in the electric double layer ($Br^-$), via ion pairing, Cu(II) ions removal by the activated carbon is probably related to the carbon-oxygen groups particularly those of acid type. The adsorption capacities of CTAB-kaolin for the investigated adsorbates are considerably higher compared with those of unmodified kaolin. However, the adsorption capacities of the activated carbons are by far higher than those determined for CTAB-kaolin.

Analytical Model in Pedestrian Accident by Van Type Vehicle (Van 형 차량의 보행자 충돌 사고 해석 모델)

  • Ahn, Seung-Mo;Kang, Dae-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.115-120
    • /
    • 2008
  • The fatalities of pedestrian accounted for about 40.0% of all fatalities in Korea (2005 year). In pedestrian involved accident, the most important data to inspect accident is throw distance of pedestrian. The throw distance of pedestrian can be influenced by many variables, such as vehicular frontal shape, vehicular impact speed, the offset of impact point, the height of pedestrian, and road condition. The trajectory of pedestrian after collision can be influenced by vehicular frontal shape classified into sedan type, box type, SUV type and van type. Many studies have been done about pedestrian accident with passenger car model and bus model for simple factors. But the study of pedestrian accident by van type vehicle was much insufficient, and even that the influence of multiple factors such as the offset of impact point was neglected. In this paper, a series of pedestrian kinetic simulation were conducted to inspect relationship between throw distance and multiple factors with using PC-CRASH s/w, a kinetic analysis program for a traffic accident for van type. By based on the simulation results, multi-variate regression was conducted, and regression equation was presented.

  • PDF

Measurement of Turbulent Wake behind a SUBOFF Model and Derivation of Experimental Equations (SUBOFF 모형 후방 난류항적 계측 및 실험식 유도)

  • Shin, Myung-Soo;Moon, Il-Sung;Nah, Young-In;Park, Jong-Chun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.198-204
    • /
    • 2011
  • This paper presents the experimental result to investigate the characteristics of turbulent wake generated by submarine. A SUBOFF nude model which was assumed as an axial -symmetric body was used to create wake, and a thin strut was mounted on the top of the model. The experiments were conducted in a circulating water channel(CWC), and a hot-film was used to measure the turbulence in wake cross-section at the distance range of 0.0~2.0L from the model. The hot film anemometer measured turbulent velocity fluctuations, and the timeaveraged mean velocity and turbulent intensity are obtained from the acquired time-series data. Measured results show well the general characteristics of turbulent intensity, kinetic energy and mean velocity distribution. Also, experimental equations are derived. These experimental equations show well the general characteristics of the turbulent wake behind the submerged body with simple configuration.

A Study on the Development of Low Reynolds Number Second Moment Turbulence Model (저레이놀즈수 2차 모멘트 난류모형 개발에 관한 연구)

  • 김명호;최영돈;신종근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1596-1608
    • /
    • 1993
  • Low Reynolds number second moment turbulence model which be applicable to the fine gird near the wall region was developed. In this model, turbulence model coefficients in the pressure strain model of the Reynolds stress equation was expressed as functions of turbulence Reynolds number $R_{t}\equivk^{2}/(\nu\varepsilon)).$ In the derivation procedure of the present low Reynolds number algebraic stress model, Laufer's near wall experimental data on Reynolds stresses were curve fitted as functions of R$_{t}$ and the resulting simultaneous equations of the model coefficients were solved by using the boundary conditions at wall and high Reynolds number limiting conditions. Predicted Reynolds stresses and dissipation rate of turbulent kinetic energy etc. in the 2 dimensional parallel, plane channel flow and pipe flow were compared with the preditions obtained by employing the Launder-Shima model, standard algebraic stress model and several experimental data. Results show that all the Reynolds stresses and dissipation rate of turbulent kinetic energy predicted by the present low Reynolds number algebraic stress model agree better with the experimental data than those predicted by other algebraic stress models.

Adsorptive Removal of Phosphate Ions from Aqueous Solutions using Zirconium Fumarate

  • Rallapalli, Phani B.S.;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.495-501
    • /
    • 2020
  • In this study, zirconium fumarate of metal-organic framework (MOF-801) was solvothermally synthesized at 130 ℃ and characterized through powder X-ray diffraction (PXRD) analyses and porosity measurements from N2 sorption isotherms at 77 K. The ability of MOF-801 to act as an adsorbent for the phosphate removal from aqueous solutions at 25 ℃ was investigated. The phosphate removal efficiency (PRE) obtained by 0.05 g/L adsorbent dose at an initial phosphate concentration of 60 ppm after 3 h was 72.47%, whereas at 5 and 20 ppm, the PRE was determined to be 100% and 89.88%, respectively, after 30 min for the same adsorbent dose. Brunauer-Emmett-Teller (BET) surface area and pore volume of the bare MOF-801 sample were 478.25 ㎡/g and 0.52 ㎤/g, respectively, whereas after phosphate adsorption (at an initial concentration of 60 ppm, 3 h), the BET surface area and pore volume were reduced to 331.66 ㎡/g and 0.39 ㎤/g, respectively. The experimental data of kinetic (measured at initial concentrations of 5, 20 and 60 ppm) and isotherm measurements followed the pseudo-second-order kinetic equation and the Freundlich isotherm model, respectively. This study demonstrates that MOF-801 is a promising material for the removal of phosphate from aqueous solutions.

Studies on the Polarographic Kinetic Currents for the First Order Reactions at the Droping Mercury Electrode (水銀滴下電極에서 一次反應에 對한 포라로그라프電流에 關한 硏究)

  • Kim, Hwang-Am;Chin, Chang-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.14-18
    • /
    • 1962
  • Solution to the diffusion layer for the first order reaction at a droping mercury electrode (D.M.E.) is presented. Equations are derived for polarographic currents for the reactions at the D.M.E. A factor which is applicable to the D.M.E. is derived, when we use the equations of the polarographic currents for the reactions at a plane electrode(P.E.), and the rate constants of the backward reactions are negligibly small. Polarographic currents from a combination of diffusions and reactions are obtained at the D.M.E. with special approximation. Rate constant for the reaction of ferrous ion with hydrogen-peroxide is determined at the D.M.E.,using the data of Kolthoff and Perry. The agreement of the equation with the data of Kolthoff and Perry for the kinetic current of ferric ion in the presence of hydrogen-peroxide is good. Ratios of diffusion layer at the D.M.E. to the diffusion layer at the P.E. are discussed and show that, when the rate constants of the backward reactions for the first order reactions are larger than 1/0.05 sec-1. and drop-time about 3 sec., these ratioes are about one.

  • PDF