• Title/Summary/Keyword: kinetic energy

Search Result 1,851, Processing Time 0.037 seconds

A Study on the Effect of Piston Pin Offset on a Piston Motion and Kinetic Energy Loss (피스톤핀 옵셋이 피스톤운동과 운동에너지 손실에 미치는 영향에 관한 연구)

  • Han, D.J.;Choi, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.22-33
    • /
    • 1993
  • A theoretical analysis of predicting the detailed motion of a piston-crank mechanism within piston-guide clearance is presented, and the analysis is applied to the piston motion in a gasoline engine. A piston movement program is developed to calculate the piston attitude relative to the bore, the piston to bore impact velocity and kinetic energy loss and the net transverse force acting on the piston. This paper presents the formulation of a set of differential equations governing the transverse and rotational motion of a piston. These equations of motion were solved by well established Runge-Kutta method. As a result of this study, it is possible to predict the effects of piston geometry and piston pin offset on a piston motion and kinetic energy loss.

  • PDF

Analytical Solution of Non-dimensional Turbulent Kinetic Energy Distribution Function in the Turbulnet Wake behind a Submarine (잠수함 난류항적 기술을 위한 무차원 난류 에너지 분포함수 B(ξ) 예측)

  • Lee, YongChol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.31-36
    • /
    • 2015
  • To describe turbulent wake behind a submarine, it is very important to know turbulent kinetic energy distributions in the wake. To get the distribution is to solve the turbulent kinetic energy equation, and to solve the equation, it is needed both information of ${\lambda}$ and ${\sigma}$ which define physical characteristics of the wake. This paper gives analytical solution of the equation, which is driven from $8^{th}$ order polynomial fitting, as a function of given ${\lambda}$, even though there is no information of ${\sigma}$. In comparison between numerical solution(i.e. exact solution) and analytical solution, the relative errors between them are less than to 5% in the range of 0 < ${\xi}$ < 0.95 in most given ${\lambda}$.

Prediction of Energy Expenditure by Using a Tri-axial Accelerometer (단일 3축 가속도센서를 사용한 보행 시 대사에너지 예측)

  • Lee, Hee-Young;Kim, Seung-Hyeon;Lee, Dong-Yeop;Park, Sun-Woo;Kim, Young-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.253-258
    • /
    • 2011
  • The purpose of this study was to compare metabolic energy expenditure with the computed kinetic energy for different speeds of walking and running over the treadmill and to find the relevance for individual and group equation by performing a statistical analysis, Bland-Altman plot. Seven male subjects participated, and they were required to walk and run on the treadmill with the gas analyzer and triaxial accelerometer. Walking speeds were 3.0, 4.0, 5.0 and 6.0 km/h and running speeds were 7.0, 8.0 and 9.0 km/h respectively. Kinetic energy was calculated by the integration of acceleration data and compared with the metabolic energy measured by a gas analyzer. Correlation coefficients showed relatively good between the measured metabolic energy and the calculated kinetic energy. In addition, a dramatic increase in kinetic energy was also observed at the transition speed of walking and running, and two standard deviations in Bland-Altman plot, derived from the difference between measured and predicted values, were 1.14, 2.53, 2.93, 1.80, 2.80, 0.60 and 2.48 respectively. It was showed that there is no difference for methods of how to predict the kinetic energy expenditure for individual and group even though people had each different physical characteristic.

Energy Conservation for Runoff and Soil Erosion on the Hillslope (산지사면의 유출 및 토양침식에 대한 에너지 보존)

  • Shin, Seung-Sook;Park, Sang-Deog;Cho, Jae-Woong;Hong, Jong-Sun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.234-238
    • /
    • 2008
  • The energy conservation theory is introduced for investigating processes of runoff and soil erosion on the hillslope system changed vegetation condition by wildfire The rainfall energy, input energy consisted of kinetic and potential energy, is influenced by vegetation coverage and height. Output energy at the outlet of hillslope is decided as the kinetic energy of runoff and erosion soil, and mechanical work according to moving water and soil is influenced dominantly by the work rather than the kinetic energy. Relationship between output and input energy is possible to calculate the energy loss in the runoff and erosion process. The absolute value of the energy loss is controlled by the input energy size of rainfall because energy losses of runoff increase as many rainfall pass through the hillslope system. The energy coefficient which is dimensionless is defined as the ratio of input energy of rainfall to output energy of runoff water and erosion soil such as runoff coefficient. The energy coefficient and runoff coefficient showed the highest correlation coefficient with the vegetation coverage. Maximum energy coefficient is about 0.5 in the hillslope system. The energy theory for output energy of runoff and soil erosion is presented by the energy coefficient theory associated with vegetation factor. Also runoff and erosion soil resulting output energy have the relation of power function and the rates of these increase with rainfall.

  • PDF

Characterization of Rainfall Kinetic Energy in Seoul (서울 지점의 강우운동에너지 특성에 관한 연구)

  • Lee, Joon-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.111-118
    • /
    • 2020
  • The rainfall kinetic energy equation derived in the USA has been used in South Korea to quantitatively estimate the amount of soil erosion caused by rainfall for the past 40 years. It is critical to analyze the characteristics of rainfall kinetic energy that causes soil erosion from measured storm events in the study area because the characteristics depend on climate, region, and time. The purpose of this study is to analyze the characteristics in Seoul, South Korea, and the data of the Parsivel rain gauge measured in Seoul for 3 years was used for the current study. This study focuses on deriving the relationship between rainfall kinetic energy and rainfall intensity among the data measured by the Parsivel. The new rainfall kinetic energy equation in Seoul is proposed and compared with the previous equations used in South Korea.

Evaluation of Changesin the Physical Characteristics of Raindrops Under a Canopy in Central Korea (나무 아래 빗방울(雨滴)의 물리적 특성변화 분석)

  • Kim, Jin Kwan;Kim, Min Seok;Yang, Dong Yoon;Lim, Young Shin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.3
    • /
    • pp.105-122
    • /
    • 2016
  • To evaluate the changes in the physical characteristics of open rainfall related to canopy effects and rainfall intensity in Korea, the terminal velocity of raindrops and drop size distributions(DSD) were continuously measured by an optical-laser disdrometer in an open site(Op) and in two forest stands(Th1: Larix leptolepis, Th2: Pinus koraiensis) during five rainfall events in 2008. The terminal velocity, DSD and two forms of kinetic energy(KE, $Jm^{-2}$ $mm^{-1}$; KER, $Jm^{-2}$ $h^{-1}$) of open rainfall drops were determined and were compared with those of throughfall drops under two different canopy heights. The effects of the canopy and rainfall intensity, together with wind speed, on the changes in drop size and kinetic energy of throughfall were evaluated. Throughfall drops were larger than open rainfall drops. The distribution of terminal velocities for the drop sizes measured at Th2 was lower than that at Op; however, at Th1 the distribution was similar to that at Op. The total kinetic energy of throughfall at Th1 and Th2 was higher than the total kinetic energy of open rainfall, and the kinetic energy distribution for the drop sizes wassimilar to the drop size distribution. The observed throughfall-KER at Th1 was lower than an estimate previously produced using a model. The overestimation from the modeled value at Th1 was likely to be due to overestimated values of a square root transformation of fall height and its coefficient in the model because the distributions of terminal velocity for the drop size measured at Th1 were similar to those of open rainfall.

The Effect of Density Gradient on the Self-modulated Laser Wakefield Acceleration with Relativistic and Kinetic Effects

  • Yoo, Seung-Hoon;Kim, Jae-Hoon;Kim, Jong-Uk;Seo, Ju-Tae;Hahn, Sang-June
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.42-47
    • /
    • 2009
  • The propagation of an intense laser pulse through an upward density-gradient plasma in a self-modulated laser wakefield acceleration (SM-LWFA) is investigated by using particle-in-cell (PIC) simulations. In the fully relativistic and kinetic PIC simulations, the relativistic and kinetic effects including Landau damping enhance the electron dephasing. This electron dephasing is the most important factor for limiting the energy of accelerated electrons. However, the electron dephasing, which is enhanced by relativistic and kinetic effects in the homogeneous plasma, can be forestalled through the detuning process arising from the longitudinal density gradient. Simulation results show that the detuning process can effectively maintain the coherence of the laser wake wave in the spatiotemporal wakefield pattern, hence considerable energy enhancement is achievable. The spatiotemporal profiles are analyzed for the detailed study on the relativistic and kinetic effects. In this paper, the optimum slope of the density gradient for increasing electron energy is presented for various laser intensities.

Stiffness effect of testing machine indenter on energy evolution of rock under uniaxial compression

  • Tan, Yunliang;Ma, Qing;Wang, Cunwen;Liu, Xuesheng
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.345-352
    • /
    • 2022
  • When rock burst occurs, the damaged coal, rock and other fragments can be ejected to the roadway at a speed of up to 10 m/s. It is extremely harmful to personnel and mining equipment, and seriously affects the mining activities. In order to study the energy evolution characteristics, especially kinetic energy, in the process of rock mass failure, this paper first analyzes the energy changes of the rock in different stages under uniaxial compression. The formula of the kinetic energy of rock sample considering the energy from the indenter of the testing machine is obtained. Then, the uniaxial compression tests with different stiffness ratios of the indenter and rock sample are simulated by numerical simulation. The kinetic energy Ud, elastic strain energy Ue, friction energy Uf, total input energy U and surface energy Uθ of crack cracking are analyzed. The results show that: The stiffness ratio has influence on the peak strength, peak strain, Ud, Ue, Uθ, Uf and U of rock samples. The variation trends of strength, strain and energy with stiffness are different. And when the stiffness ratio increases to a certain value, if the stiffness of the indenter continues to increase, it will have no longer effect on the rock sample.

Determination of Kinetic Parameters in Coal Weathering Processes

  • Yun, Yongseung
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.11a
    • /
    • pp.31-36
    • /
    • 1993
  • Three different methods were employed to measure the degree of aerial oxidation in coal and the resulting oxidation/weathering indices were applied to obtain kinetic parameters of aerial oxidation processes, The index (i.e., slurry pH, Free Swelling Index, weight gain) values were subjected to kinetic analysis based on power-law Arrhenius type reaction model. The results show that activation energy of the aerial oxidation in 20-29$0^{\circ}C$ is in the range of 12-16 ㎉/㏖ and the agreement among three techniques is remarkable. The first order kinetic model is suitable in describing low temperature aerial oxidation process, except in the FSI case where the zero order expression is the best one.

  • PDF