• 제목/요약/키워드: kinematical analysis

검색결과 136건 처리시간 0.025초

유한회전과 4원수를 이용한 유니버설 조인트 시스템의 기구해석 비교 (Comparisons of Kinematical Analysis for the Universal-joint System by Using Finite Rotations and Quaternions)

  • 윤성호
    • 한국전산구조공학회논문집
    • /
    • 제23권2호
    • /
    • pp.183-189
    • /
    • 2010
  • 본 논문에서는 자동차의 구동계 등에 사용되는 유니버설 조인트의 기구학적 거동을 관찰하기 위하여 오일러 각과 4원수(quaternion)를 적용한 두 가지 방법을 비교하였다. 이와 관련된 종래의 연구자들은 오일러 각을 사용하여 회전체의 동적인 거동을 해석하였으나 결과의 일관성과 정확도가 부족하였다. 유니버설 조인트 시스템 해석에서도 이러한 단점을 확인하였고 이를 극복하고자 4원수를 적용하였다. 구동시 원동축 1개축 회전과 원동축과 직각방향 회전축 2개의 축이 동시에 존재하는 경우에 대하여 수치해석을 통하여 기하학적인 물리량을 산출하였다. 4원수를 채용한 방법이 세차운동을 포함하는 2개축 회전에서 유니버설 조인트 시스템을 해석하는데 있어 더욱 유용한 방법임을 보여 주었다.

실리콘 웨이퍼 양면 연마 공정의 기구학적 모델링과 해석에 관한 연구 (A Study on Kinematical Modeling and Analysis of Double Side Wafer Polishing Process)

  • 이상직;정석훈;이현섭;박선준;김영민;정해도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.485-485
    • /
    • 2009
  • Double side polishing process has been used for various industrial applications, such as polishing of semiconductor substrates and flat panel display glasses. In wafer manufacturing, double side polishing process is applied to improve wafer flatness and to minimize particle generation from wafers in device manufacturing processes, which is recognized as one of the most important processes. Whereas the kinematical modeling and analysis results of single side polishing, extensively used for chemical-mechanical polishing (CMP) in device manufacturing, are well investigated, the studies in conjunction with double side polishing are barely carried out, due to the complication of polishing system and the uncertainty of wafer motion in the carrier. This paper suggests the derivation of kinematical model with consideration of carrier and wafer motion in double side polishing, and then presents the effect of kinematical parameters on material removal amount and its non-uniformity. The kinematical analysis results help to understand the double side polishing process and to control the polishing results.

  • PDF

직교형 2차원 진동절삭기의 기구학적 해석 및 진동 특성 고찰 (Kinematical Analysis and Vibrational Characteristics of Orthogonal 2-dimensional Vibration Assisted Cutting Device)

  • 노병국;김기대
    • 한국소음진동공학회논문집
    • /
    • 제22권9호
    • /
    • pp.903-909
    • /
    • 2012
  • In elliptical vibration cutting(EVC) where the cutting tool traces a micro-scale 2-dimensional elliptical trajectory, the kinematical and vibrational characteristics of the EVC device greatly affect cutting performance. In this study, kinematical and vibrational characteristics of an EVC device constructed with two orthogonally-arranged stacked piezoelectric actuators were investigated both analytically and experimentally. The step voltage was applied to the orthogonal EVC device and the associated displacements of the cutting tool were measured to assess kinematical characteristics of the orthogonal EVC device. To investigate the vibrational characteristic of the orthogonal EVC, sinusoidal voltage was applied to the EVC device and the resulting displacements were measured. It was found from experiments that coupling of displacements in the thrust and cutting directions and the tilt of the major axis of the elliptical trajectory exists. In addition, as the excitation frequency is in vicinity of resonant frequencies the distortion in the shape of the elliptical trajectory becomes greater and change in the rotation direction occurs. To correct the shape distortion of the elliptical trajectory, the shape correcting procedure developed for the parallel EVC device was applied for the orthogonal EVC device and it was shown that the shape correcting method successfully corrects distortion.

구형 인볼류트 베벨기어쌍의 각속도비에 관한 해석적 연구 (An Analytical Investigation on the Ratio of Angular Velocity in Spherical Involute Bevel Gearsets)

  • Park, N.G.
    • 한국정밀공학회지
    • /
    • 제12권5호
    • /
    • pp.40-45
    • /
    • 1995
  • The kinematical relationship of bevel gearsets lies at the root of the gear design. As the demand on precision bevel gears is increased in the related industries, the kinematic analysis of a pair of sperical involute bevel gears needs to be exactly evaluated for the computer aided design. Pitch cone angles of bevel gearsets have been calculated under the assumption that the geared system is equivalent to a coned roller system without slipping. But this kinematical model involves some errors in the value of the ratio of angular velocity. In this paper, the ratio of the angular velocity is exactly derived, based on the perfect involute tooth surface. Four nonlinear equations representing the kinematical relationships are numerically solved to obtain the pitch and base cone angles. The ratios of angular volocities according to pressure and shaft angles are calculated and compared with those of the approximate gear model.

  • PDF

평행한 적층 압전 액추에이터로 구성된 진동절삭기의 기구학적 특성 고찰 (Kinematical Characteristics of Vibration Assisted Cutting Device Constructed with Parallel Piezoelectric Stacked Actuators)

  • 노병국;김기대
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1185-1191
    • /
    • 2011
  • The kinematic characteristics of cutting device significantly affects cutting performance in 2-dimensional elliptical vibration cutting(EVC) where the cutting tool cuts workpiece, traversing a micro-scale elliptical trajectory in a trochoidal motion. In this study, kinematical characteristics of EVC device constructed with two parallel stacked piezoelectric actuators were analytically modeled and compared with the experimental results. The EVC device was subjected to step and low-frequency(0.1 Hz) sinusoidal inputs to reveal only its kinematical displacement characteristics. Hysteresis in the motion of the device was observed in the thrust direction and distinctive skew of the major axis of the elliptical trajectory of the cutting tool was also noticed. Discrepancy in the voltage-to-displacement characteristics of the piezoelectric actuators was found to largely contribute to the skew of the major axis of the elliptical trajectory of the cutting tool. Analytical kinematical model predicted the cutting direction displacement within 10 % error in magnitude with no phase error, but in estimating the thrust direction displacement, it showed a $27^{\circ}$ of phase-lag compared with the measured displacement with no magnitude error.

평행봉 Kenmotsu 동작의 운동학적 분석 (A Kinematical Analysis of the Kenmotsu on the Parallel Bars)

  • 공태웅;김용선;윤창선
    • 한국운동역학회지
    • /
    • 제15권3호
    • /
    • pp.61-70
    • /
    • 2005
  • The purpose of study was to investigate the kinematic variables of Kenmotsu motion in Parallel bars. To this study, by 3 dimensional kinematical analysis of 4 male national gymnasts participants in the 28th Athens Olympic Game in 2004, kinematic data collected using video camera. Coordinate data were smoothed by using a fourth-order Butterworth low pass digital filter with cutoff frequency of 6Hz. The conclusions were as follows. 1. In P2, because the constrained swing movement made the movement of a rising back difficult7, the movements of Reg. were performed at low position after Air phase. 2. In E5 event, for the shake of a stable handstand and applied techniques like a Belle(E-value), a Belle Piked(super E-value), a vertical velocity in E2, a horizontal velocity in E3 and a vertical velocity in E4 were necessary for high velocities. 3. In E4 event, it was appeared that for a flexible body's movement of a vertical up-flight, the large angle of the shoulder joint and the flexion & extension of the hip joint were necessary in Air phase and a long flight time and vertical displacement made Reg. movements stable at the high position.

철봉 어깨 틀어 휘돌아 다시 잡기(el-grip swing with one turn to el-grip) 동작의 운동학적 분석 (Kinematical Analysis of El-grip swing with 1turn to el-grip in horizontal bar)

  • 김재필
    • 한국운동역학회지
    • /
    • 제13권1호
    • /
    • pp.51-62
    • /
    • 2003
  • This study was attempted to kinematical characteristics of the El-grip swing with 1turn to el-grip in elite horizontal bar for the purpose of improving performance. The subjects were three males who were 2002 Busan Asian Games in men's team. The three dimensional motion analysis with DLT method was executed using three video cameras of analyzing the actual competition situation. In point of analyzing the actual competition situation, it is expected that gymnastics and coaches have the effective informations, and the following conclusion had resulted. 1. In case of release, It is impotant to make fast horizontal velocity of CM, high vertical position of CM, large hip and shoulder angle. Also It should be performed release motion of trunk rotation angle(+). 2. During LHR the action should be made at higher position than the CM and the shoulder joint is moving within $127{\pm}16.82$. It is important to make large lunk rotation angle. 3. During Hop, the RHR motion should be done in high position with short time and fast twisting action and to reduce the vertical speed is important.

골프스윙 현장지도를 위한 정성적 평가 적용 (The Application of Qualitative Evaluation for Golf Swills field Lesson)

  • 유승원
    • 한국운동역학회지
    • /
    • 제19권2호
    • /
    • pp.323-336
    • /
    • 2009
  • 본 연구는 골프스윙의 교육방법 중 현장지도를 위한 과학적 근거와 보조 자료의 필요성을 알아보기 위해 실시되었다. 따라서 숙련자인 투어프로골퍼를 대상으로 드라이버스윙의 현장지도 결과를 운동학적 관점에서 재해석하고 정밀한 분석을 통해 현장지도의 타당성과 오류를 검사하는 하나의 예를 만들어보고자 하였다. 그 결과 현장지도결과는 운동학적 기술 분석의 정성적 평가와 대상자간과 항목간에서 약간의 차이를 나타냈으며, 결국 본 연구의 5명의 대상자가 보이는 오류의 진단은 두 방법간에 약간의 차이는 있었다. 하지만 오류의 원인과 오류를 막기 위한 보상작용의 발견에 있어서 큰 차이를 보였다. 오류의 진단은 지도자의 경험에 의해 거의 대부분 가능했다. 따라서 지도자의 경험에 의한 오류 수정을 위한 피드백은 운동학적 기술 분석의 정성적 평가와 차이를 나타냈다. 결론적으로 정확한 골프스윙의 지도에 있어서는 현장지도에 의한 즉각적인 피드백과 근본적인 원인을 정확하게 판단할 수 있는 운동학적 기술 분석의 정성적 평가가 필요하다고 사료된다.

다중충돌 피닝잔류응력 평가를 위한 소성숏이 포함된 3차원 유한요소해석 모델 (A 3D FEA Model with Plastic Shots for Evaluation of Peening Residual Stress due to Multi-Impacts)

  • 김태형;이형일
    • 대한기계학회논문집A
    • /
    • 제32권8호
    • /
    • pp.642-653
    • /
    • 2008
  • In this paper, we propose a 3-D finite element (FE) analysis model with combined physical behavior and kinematical impact factors for evaluation of residual stress in multi-impact shot peening. The FE model considers both physical behavior of material and characteristics of kinematical impact. The physical parameters include elastic-plastic FE modeling of shot ball, material damping coefficient, dynamic friction coefficient. The kinematical parameters include impact velocity and diameter of shot ball. Multi-impact FE model consists of 3-D symmetry-cell. We can describe a certain repeated area of peened specimen under equibiaxial residual stress by the cell. With the cell model, we investigate the FE peening coverage, dependency on the impact sequence, effect of repeated cycle. The proposed FE model provides converged and unique solution of surface stress, maximum compressive residual stress and deformation depth at four impact positions. Further, in contrast to the rigid and elastic shots, plastically deformable shot produces residual stresses closer to experimental solutions by X-ray diffraction. Consequently, it is confirmed that the FE model with peening factors and plastic shot is valid for multi-shot peening analyses.