• Title/Summary/Keyword: kinematic viscosity of Biodiesel

Search Result 27, Processing Time 0.027 seconds

Spray Characteristics of Biodiesel Fuel by Blending Bioethanol and Diesel Fuel in a Common Rail Injection System (커먼레일 분사시스템에서 바이오에탄올 및 디젤연료 혼합 바이오디젤의 분무 특성)

  • Park, Su-Han;Suh, Hyun-Kyu;Kim, Hyung-Jun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.82-89
    • /
    • 2009
  • In order to investigate the spray characteristics according to diesel and bioethanol blending with biodiesel fuel, macroscopic spray characteristics were analyzed from the comparison of the effect of the injection pressure, ambient pressure and density on the spray tip penetration and spray cone angle. In addition, spray atomization characteristics were studied with local and overall Sauter mean diameter (SMD) and the contour map of SMD distribution at various injection conditions. It was revealed that the spray tip penetration of biodiesel fuels blended with diesel and ethanol was shorter than that of an undiluted biodiesel fuel at low injection pressure. However, the difference of spray tip penetration among three test fuels reduces at a high injection pressure. Increase of the ambient gas density leads to the decrease of the spray tip penetration of three test fuels. When diesel and ethanol fuels add to an undiluted biodiesel fuel, spray cone angle increases due to the decrease of the fuel density at the same ambient pressure condition. On the other hand, the droplet mean diameter decreases due to the reduction of the kinematic viscosity and surface tension.

Study of Fuel Properties for Biodiesel Derived from Duck's Oil (오리기름으로부터 합성된 바이오디젤의 연료특성 연구)

  • Lim, Young-Kwan;Lee, Cheon-Ho;Jung, Choong-Sub;Yim, Eui-Soon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.653-658
    • /
    • 2010
  • Biodiesel is well known for an eco-friendly alternative fuel for petrodiesel. But biodiesel has a disadvantage since it is derived from expensive food resource. In this study, we synthesized the biodiesel from duck's oil which was food trash via transesterification under base catalyst. After analytic result of density, kinematic viscosity, cold temperature characteristics, lubricity and cetane number which were main fuel characteristics, this duck's biodiesel has enough potential to use as fuel except only domestic winter season.

Characterizing Animal-fats Biodiesel as Heating Fuel for Agricultural Hot Air Heater (농업용 온풍난방기에서 동물성바이오디젤의 연소특성)

  • Kim, Youngjung;Park, Seokho;Kim, Chungkil;Kim, Yeoungjin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.115-115
    • /
    • 2011
  • Biodiesel (BD) was made from animal-fats reacting with methanol and potassium hydroxide in the laboratory. The biodiesel made in the laboratory was sent to K-petro, the government agency, to inspect the quality of animal-fats biodiesel, of which generally the quality was acceptable for heating oil for agricultural hot air heater. Kinematic viscosity and calorific values of the biodiesels were measured. BD20(K), kerosene based biodiesel, showed 18cSt at $-20^{\circ}C$. It seems that BD100 can not be suitable for heating fuel under some temperature. As BD content increased calorific value decreased, up to 40,000J/g for 100% BD, while light oil calorific value was 45,567J/g, showing difference of 5,567J/g, about 12% difference. Several different fuels, BD20, BD50, BD100 and light oil, were prepared and tested for fuel combustion qualities for agricultural hot air heater and their combustion performances were compared and analyzed. Flame dimensions of biodiesels and light oil were almost same shape at the same combustion condition in the burner of the hot air heater. Generally $CO_2$ amounts of BDs are greater than light oil. But,the differences are so small that it is hard to tell there was significant difference existed between the BDs combustion and light oil.

  • PDF

Correlations for Predicting Viscosity of Vegetable Oils and Its Derivatives for Compression Ignition Engines

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.14 no.3
    • /
    • pp.122-130
    • /
    • 2009
  • Vegetable oil and its derivatives as an alternative diesel fuel have become more attractive recently because of its environmental benefits and the fact that they are made from renewable resources. Viscosity is the most significant property to affect the utilization of vegetable oil and its derivatives in the compression ignition engines. This paper presents the existing correlations for predicting the viscosity of vegetable oil and its derivatives for compression ignition engines. According to the parameter considered in the correlations, the empirical correlations can be divided into six groups: correlations as a function of temperature, of proportion, of composition, of temperature and composition, of temperature and proportion, and of fuel properties. Out of physical properties of fuel, there exist in the literature several parameters for giving the influence on kinematic viscosity such as density, specific gravity, the ratio of iodine value over the saponification value, higher heating value, flash point and pressure. The study for the verification of applicability of existing correlations to non-edible vegetable oil and its derivatives is required.

  • PDF

Microwave Mediated Production of FAME from Waste Cooking Oil : Optimization of Process Parameters by RSM (마이크로웨이브를 이용한 폐식용유로부터 FAME의 제조 : RSM에 의한 공정변수 최적화)

  • Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.172-178
    • /
    • 2020
  • In this study, the optimization of the biodiesel production process from waste oil using microwave with response surface methodology (RSM) was conducted. The microwave irradiation time and power in addition to the alcohol/oil mole ratio were chosen as process parameters. Also the fatty acid methyl ester (FAME) content (over 96.5%) and kinematic viscosity (1.9~5.5 cSt) were selected as response values. From basic experiments, the range of quantitative factors were set as following; 4~6 min, 400~600 W, and 7~9 for the microwave irradiation time and power, and alcohol/oil molar ratio, respectively. The optimum conditions for the methanolysis were 5.0~5.1 min, 481.3~525.5 W, 7.9~8.4, and 2.0 or 3.0 mg KOH/g for the microwave irradiation time and power, methanol/oil molar ratio, and each acid value, respectively. The FAME content and kinematic viscosity were predicted as 97.49~96.34% and 4.01~4.12 cSt, respectively, under the condition above. Under the optimum experimental conditions, the results showed that the FAME content and kinematic viscosity of 97.82~96.42% and 4.07~4.16 cSt, respectively were measured and the mean error rates were 0.22% and 0.98%, respectively.

Fuel Qualities and Combustion Characteristics of Animal-Fats Biodiesel for Agricultural Hot Air Heaters

  • Kim, Youngjung;Park, Seokho;Kim, Youngjin;Kim, Chungkil
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.296-301
    • /
    • 2012
  • Purpose: Combustion and fuel qualities of the animal-fats biodiesel as a heating fuel for agricultural hot air heater were studied. Methods: Biodiesel (BD) was made from animal-fats by reacting with methanol and potassium hydroxide in the laboratory. The biodiesel made in the laboratory was tested for fuel and combustion qualities. Results: The kinematic viscosity and the calorific values of the biodiesels were measured. Kerosene based biodiesel, BD20 (K) showed 18 cSt at $-20^{\circ}C$. It seemed that BD100 was not suitable for a heating fuel under some temperature. As BD content increased, the calorific value decreased up to 40,000 J/g for BD100, while the calorific value of light oil was 45,567 J/g showing difference of 5,567 J/g, about 12% difference. Several different fuels including BD20 (biodiesel 20% + light oil 80%), BD50 (biodiesel 50% + light oil 50%), BD100 (biodiesel 100%), and light oil were tested for fuel combustion qualities for agricultural hot air heater, and their combustion performances were compared and analyzed. Flame dimensions of biodiesels and light oils were almost the same shape at the same combustion condition. Generally, the $CO_2$ amounts of BDs were greater than light oil. However, in this study the differences were minor, so there was no significant difference existed between the BDs combustion and light oil. Conclusions: It seemed that quality was good for heating oil for agricultural hot air heater because of showing no barriers for continuous combustion and proper exhaust gas temperature and $CO_2$ amount discharged. But, for fuel fluidity for higher BD content fuel could be a detrimental problem in situations where the outdoor temperature is lowered. As BD content increased, calorific value decreased up to 40,000 J/g for BD100. Calorific value difference between BD20 and light oil was about 1,360 J/g.

Production of Biodiesel from Yellow Oleander (Thevetia peruvian) Oil and its Biodegradability

  • Yarkasuwa, Chindo Istifanus;Wilson, Danbature;Michael, Emmanuel
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.377-381
    • /
    • 2013
  • Thevetia peruviana (Yellow Oleander) seed oil was extracted with n-hexane in a soxhlet extractor. The ethanolysis and methanolysis of the oil were carried out with 50% of potassium hydroxide in ethanol and methanol respectively by weight of oil, as catalyst. The biodiesel was tested for biodegradability using E. coli. The percentage yield of the FAEE and FAME were 84.8% and 91.6% respectively. The biodegradability values of 81.4% and 86.2% were obtained for FAEE and FAME respectively after a period of 28 days. Other fuel quality parameters determined are the cetane index of 47.19 (FAEE) and 58.97 (FAME), flash point of $198^{\circ}C$ (FAEE) and $175^{\circ}C$ (FAME), kinematic viscosity at $40^{\circ}C$ of 5.21 $mm^2s^{-1}$ (FAEE) and 5.10 $mm^2s^{-1}$(FAME), pour point of $4^{\circ}C$ (FAEE) and $-2^{\circ}C$ (FAME) and a cloud point of $6^{\circ}C$ (FAEE) and $3^{\circ}C$ (FAME). Thus, Thevetia peruviana oil has a high potential for use in production of environmentally friendly biodiesel.

Determination of Fuel Properties for Blended Biodiesel from Various Vegetable Oils (다양한 식물성오일로부터 생산된 바이오디젤의 혼합에 따른 연료특성 분석)

  • Lim, Young-Kwan;Jeon, Cheol-Hwan;Kim, Shin;Yim, Eui Soon;Song, Hung-Og;Shin, Seong-Cheol;Kim, DongKil
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.237-242
    • /
    • 2009
  • Various type of alternative fuel have been developed due to exhaustion of fossil fuel reserves and high oil price. Biodiesel is produced from the reaction of triglyceride, which is main component of animal fat and vegetable oil, and methanol by methanolysis as it is known for eco- friendly fuel for alternative petrodiesel. In this work, it was analyzed for the characteristics of the blended biodiesel with domestic petrodiesel according to blending ratio. Density, kinematic viscosity and flash point were increased with increasing the content of biodiesel. But the characteristic of blended biodiesel fuel were changed to aggravate in low temperature. Also, the derived cetane number(DCN) from IQT was increased by added biodiesel. Especially, the DCN of biodiesel from palm oil showed 71.26.

Life Time Estimation of Biodiesel and Biodiesel Blend Fuel from the Oxidation Stability Analysis (바이오디젤 및 바이오디젤 혼합연료의 산화특성 연구에 의한 사용 수명 예측)

  • Jung, Chung-Sub;Dong, Jong-In;Lee, Young-Jae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.579-584
    • /
    • 2007
  • 대두유로부터 생산된 바이오디젤과 바이오디젤 혼합 연료유를 대상으로 지방산메틸에스터 함량과 화학적 분석을 통해 산화 특성과 오일의 수명 예측 연구를 수행하였다. 바이오디젤, 경유, BD5, BD20은 산화가 진행될수록 산가(Acid number), 동점도(Kinematic Viscosity) 및 밀도(Density)는 증가하였다. 산가 측정결과의 활용에 의해 임의의 온도조건에서 정확한 사용수명을 예측하기 위하여 화학속도론에 의거하여 각각의 연료에 대한 사용수명식을 도출하였다. 도출된 사용수명식으로부터 바이오디젤이 가장 빠르게 산화가 진행되었고 바이오디젤 혼합량이 증가할수록 사용수명이 단축되는 것을 확인할 수 있었다.

  • PDF

Life Time Estimation of Biodiesel and Biodiesel Blend Fuel from the Oxidation Stability Analysis (바이오디젤 및 바이오디젤 혼합연료의 산화특성 연구에 의한 사용 수명 예측)

  • Jung, Chung-Sub;Lee, Young-Jae;Dong, Jong-In
    • New & Renewable Energy
    • /
    • v.3 no.2 s.10
    • /
    • pp.17-23
    • /
    • 2007
  • 대두유로부터 생산된 바이오디젤과 바이오디젤 혼합 연료유를 대상으로 지방산메틸에스터 함량과 화학적 분석을 통해 산화 특성과 오일의 수명 예측 연구를 수행하였다. 바이오디젤, 경유, BD5, BD20은 산화가 진행될수록 산가(Acid number), 동점도(Kinematic Viscosity) 및 밀도(Density)는 증가하였다. 산가 측정결과의 활용에 의해 임의의 온도조건에서 정확한 사용수명을 예측하기 위하여 화학속도론에 의거하여 각각의 연료에 대한 사용수명식을 도출하였다. 도출된 사용수명식으로부터 바이오디젤이 가장 빠르게 산화가 진행되었고 바이오디젤 혼합량이 증가할수록 사용수명이 단축되는 것을 확인할 수 있었다.

  • PDF