• Title/Summary/Keyword: kinematic modeling

Search Result 224, Processing Time 0.024 seconds

Asymptotical Shock Wave Model for Acceleration Flow

  • Cho, Seongkil
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.3
    • /
    • pp.103-113
    • /
    • 2013
  • Shock wave model describes the propagation speed of kinematic waves in traffic flow. It was first presented by Lighthill and Whitham and has been deployed to solve many traffic problems. A recent paper pointed out that there are some traffic situations in which shock waves are not observable in the field, whereas the model predicts the existence of waves. The paper attempted to identify how such a counterintuitive conclusion results from the L-W model, and resolved the problem by deriving a new asymptotical shock wave model. Although the asymptotical model successfully eliminated the paradox of the L-W model, the validation of the new model is confined within the realm of the deceleration flow situation since the model was derived under such constraint. The purpose of this paper is to derive the remaining counter asymptotical shock wave model for acceleration traffic flow. For this, the vehicle trajectories in a time-space diagram modified to accommodate the continuously increased speed at every instant in such a way that the relationship between the spacing from the preceding vehicle and the speed of the following vehicle strictly follows Greenshield's model. To verify the validity of the suggested model, it was initially implemented to a constant flow where no shock wave exists, and the results showed that there exists no imaginary shock wave in a homogeneous flow. Numerical applications of the new model showed that the shock wave speeds of the asymptotical model for the acceleration flow tend to lean far toward the forward direction consistently. This means that the asymptotical models performs in a systematically different way for acceleration and for declaration flows. Since the output difference among the models is so distinct and systematic, further study on identifying which model is more applicable to an empirical site is recommended.

IGRINS Mirror Mount Design for Three Off-Axis Collimators and One Slit-Viewer Fold Mirror

  • Rukdee, Surangkhana;Park, Chan;Kim, Kang-Min;Lee, Sung-Ho;Chun, Moo-Young;Yuk, In-Soo;Oh, Hee-Young;Jung, Hwa-Kyoung;Lee, Chung-Uk;Lee, Han-Shin;Rafal, Marc D.;Barnes, Stuart;Jaffe, Daniel T.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.233-244
    • /
    • 2012
  • The Korea Astronomy and Space Science Institute and the Department of Astronomy at the University of Texas at Austin are developing a near infrared wide-band high resolution spectrograph, immersion grating infrared spectrometer (IGRINS). The compact white-pupil design of the instrument optics uses seven cryogenic mirrors, including three aspherical off-axis collimators and four flat fold mirrors. In this study, we introduce the optomechanical mount designs of three off-axis collimating mirrors and one flat slit-viewer fold mirror. Two of the off-axis collimators are serving as H and K-band pupil transfer mirrors, and are designed as system alignment compensators in combination with the H2RG focal plane array detectors in each channel. For this reason, the mount designs include tip-tilt and parallel translation adjustment mechanisms to properly perform the precision alignment function. This means that the off-axis mirrors' optomechanical mount designs are among the most sensitive tasks in all IGRINS system hardware. The other flat fold mirror is designed within its very limitedly allowed work space. This slit-viewer fold mirror is mounted with its own version of the six-point kinematic optics mount. The design work consists of a computer-aided 3D modeling and finite element analysis (FEA) technique to optimize the structural stability and the thermal behavior of the mount models. From the structural and thermal FEA studies, we conclude that the four IGRINS mirror mounts are well designed to meet all optical stability tolerances and system thermal requirements.

A Study of Structural Analysis Simulation for Squat Exercise Foot Plate (스쿼트운동장치의 풋플레이트 구조해석에 관한 연구)

  • Jung, Byung-Geun;Kim, Ji-won;Jeong, Byeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.9
    • /
    • pp.365-372
    • /
    • 2017
  • Squat exercise is one of the important free weight exercises that can safely and effectively expect the athletic performance by establishing the rationale. Therefore, it is necessary to study the side effects caused by incorrect exercise, scientific countermeasures and to develop a exercise estimation model. It is effective and accurate to use a variety of assistive devices to calibrate athletic posture. The issues of the structural analysis for designing a foot plate for squat exercise is to model the behavior by the dynamic behavior. It should be consider that the center of gravity of each segmented body is different when the maximum load is applied. It is applied to complete system design through simulation method with kinematic dynamic, ground reaction force and load analysis for the free weight exercise equipment, VR device, and safety foot plate. In this paper, the authors propose the design method for the vertical load distribution applied in the design of the foot plate used for the squat exercise mechanism, and based on these results, design make the more safe and reliable free weight exercise equipment system.

A Study of the Influence of Short-Term Air-Sea Interaction on Precipitation over the Korean Peninsula Using Atmosphere-Ocean Coupled Model (기상-해양 접합모델을 이용한 단기간 대기-해양 상호작용이 한반도 강수에 미치는 영향 연구)

  • Han, Yong-Jae;Lee, Ho-Jae;Kim, Jin-Woo;Koo, Ja-Yong;Lee, Youn-Gyoun
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.584-598
    • /
    • 2019
  • In this study, the effects of air-sea interactions on precipitation over the Seoul-Gyeonggi region of the Korean Peninsula from 28 to 30 August 2018, were analyzed using a Regional atmosphere-ocean Coupled Model (RCM). In the RCM, a WRF (Weather Research Forecasts) was used as the atmosphere model whereas ROMS (Regional Oceanic Modeling System) was used as the ocean model. In a Regional Single atmosphere Model (RSM), only the WRF model was used. In addition, the sea surface temperature data of ECMWF Reanalysis Interim was used as low boundary data. Compared with the observational data, the RCM considering the effect of air-sea interaction represented that the spatial correlations were 0.6 and 0.84, respectively, for the precipitation and the Yellow Sea surface temperature in the Seoul-Gyeonggi area, which was higher than the RSM. whereas the mean bias error (MBE) was -2.32 and -0.62, respectively, which was lower than the RSM. The air-sea interaction effect, analyzed by equivalent potential temperature, SST, dynamic convergence fields, induced the change of SST in the Yellow Sea. In addition, the changed SST caused the difference in thermal instability and kinematic convergence in the lower atmosphere. The thermal instability and convergence over the Seoul-Gyeonggi region induced upward motion, and consequently, the precipitation in the RCM was similar to the spatial distribution of the observed data compared to the precipitation in the RSM. Although various case studies and climatic analyses are needed to clearly understand the effects of complex air-sea interaction, this study results provide evidence for the importance of the air-sea interaction in predicting precipitation in the Seoul-Gyeonggi region.