• 제목/요약/키워드: kinds of aggregate

검색결과 107건 처리시간 0.021초

폐콘크리트를 사용한 재생콘크리트의 공학적 특성에 관한 실험적 연구 (An Experimental Study on Engineering Propeties of Recycled Concrete using Waste Concrete)

  • 구봉근;이상근;김창운;류택은;박재성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.70-75
    • /
    • 1999
  • The purpose of this study is to recycle the waste concrete which is generated in large quantities as crushed stone in construction works. This study deals with the comparative analysis on the construction works and engineering properties of recycled aggregate concrete through physical experiment. The experimental variables are the kinds of aggregates, some different aggregate composition, and W/C ratio(0.40, 0.45, 0.50). It is able to find from the experimental results that the recycled aggregate concrete is good as general concrete on the construction works and engineering propperties. In addition to, the reliable regression analysis equations between compressive strength and various experimental data for recycled aggregate concrete are presented.

  • PDF

Strength criterion of plain recycled aggregate concrete under biaxial compression

  • He, Zhen-Jun;Liu, Gan-Wen;Cao, Wan-Lin;Zhou, Chang-Yang;Jia-Xing, Zhang
    • Computers and Concrete
    • /
    • 제16권2호
    • /
    • pp.209-222
    • /
    • 2015
  • This paper presents results of biaxial compressive tests and strength criterion on two replacement percentages of recycled coarse aggregate (RPRCA) by mass for plain structural recycled aggregate concrete (RAC) at all kinds of stress ratios. The failure mode characteristic of specimens and the direction of the cracks were observed and described. The two principally static strengths in the corresponding stress state were measured. The influence of the stress ratios on the biaxial strengths of RAC was also analyzed. The experimental results showed that the ratios of the biaxial compressive strength ${\sigma}_{3f}$ to the corresponding uniaxial compressive strength $f_c$ for the two RAC are higher than that of the conventional concrete (CC), and dependent on the replacement percentages of recycled coarse aggregate, stress states and stress ratios; however, the differences of tensile-compressive ratios for the two RAC and CC are smaller. On this basis, a new failure criterion with the stress ratios is proposed for plain RAC under biaxial compressive stress states. It provides the experimental and theoretical foundations for strength analysis of RAC structures subject to complex loads.

재생골재 및 섬유 혼입률에 따른 포장용 투수성 폴리머 콘크리트의 역학적 특성 (Mechanical Properties of Permeable Polymer Concrete for Permeability Pavement with Recycled Aggregate and Fiber Volume Fraction)

  • 성찬용;김영익
    • 한국농공학회논문집
    • /
    • 제52권1호
    • /
    • pp.69-77
    • /
    • 2010
  • Research on permeable pavement like asphalt and concrete pavement with porous structure has been increasing due to environmental and functional need such as reduction of run off and flood, and increase and purification of underwater resource. This study was performed to evaluate permeability, strengths and durability of permeable polymer concrete (PPC) using recycled aggregate that is obtained from waste concrete. Also, 6mm length of polypropylene fiber was used to increase toughness and interlocking between aggregate and aggregate surrounded by binder. In the test results, regardless of kinds of aggregates and fiber contents, the compressive strength and permeability coefficient of all types of PPC showed the higher than the criterion of porous concrete that is used in permeable pavement in Korea. Also, strengths of PPC with increase polypropylene fiber volume fraction showed slightly increased tendency due to increase binder with increase of fiber volume fraction. The weight reduction ratios for PPC after 300 cycles of freezing and thawing were in the range of 1.6~3.8 % and 2.2~5.6 %, respectively. The weight change ratio was very low regardless of the fiber volume fraction and aggregates. The weight reduction ratios of PPC with fiber and aggregate were in the range of 1.3~2.7 % and 2.2~3.2 % after 13 weeks and was very low regardless of the fiber volume fraction and aggregates.

강섬유보강(鋼纖維補强) 표면처리(表面處理) 순환골재(循環骨材)콘크리트의 특성(特性) (Properties of Concrete using Surface Treatment Recycled Aggregates and Steel Fibers)

  • 배주성;김남욱
    • 자원리싸이클링
    • /
    • 제20권1호
    • /
    • pp.46-53
    • /
    • 2011
  • 폐콘크리트로부터 생산되는 순환골재는 천연골재에 비해 품질이 떨어지는 단점이 있어 이를 해결하는 것이 순환골재를 더 많이 재활용하는데 있어서 해결과제라 할 수 있다. 본 연구에서는 선행연구에서 사용된 콜로이달 실리카용액을 이용하여 순환골재의 품질개선에 효과적인 표면처리 방법을 도출하였다. 또한, 본 연구에서는 도출한 표면처리방법과 강섬유보강이 콘크리트의 특성에 미치는 영향을 파악하므로써 순환골재의 더 많은 재활용과 보다 인성적인 콘크리트의 제조를 위하여 5종류의 시험체의 강도 및 휨파괴시험 결과를 비교하여 고찰하였다.

성분 및 입도분포가 다른 잔골재의 혼합에 의한 콘크리트의 품질향상 (Quality Improvement of Concrete Depending on the Mixing of Fine Aggregates Different Compositions and Grain Sizes)

  • 김영희;박민용;김정빈;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.77-79
    • /
    • 2012
  • This study is to assess the differences between concrete having only one of fine aggregates such as crushed fine aggregates, sea sand and blast furnace slag in it and concrete having mixture of two kinds of those fine aggregates in it in order to find out how to deal with the lack of some aggregates. The findings are as follows. In terms of slump, the concrete containing sea sand and blast furnace slag has very low slump values while the concrete having the mixture of crushed fine aggregate and the other fine aggregates showed better workability. In terms of compressive strength, the concrete containing the mixture of two kinds of aggregates showed higher compressive strength. Accordingly, it is likely that the concrete containing the mixture of crushed fine aggregate, sea sand and blast furnace slag is better than the concrete with only one kind of fine aggregates in terms of the usability.

  • PDF

전기로 산화 슬래그 잔골재 치환율 변화가 석회암 기반 초고강도 모르타르의 기초적 특성에 미치는 영향 (Influence of Various Replacement Ratio of Electric Arc Furnace Fine Aggregate on Fundamental Properties of Limestone Based High Strength Mortar)

  • 문병룡;송원루;이제현;김민상;한인덕;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.45-46
    • /
    • 2016
  • As the demand for super tall buildings is currently increased in domestic and foreign countries, some kinds of ultra-high strength concretes are being developed actively. Since the cross section of concrete becomes smaller thanks to such kinds of ultra-high strength concretes, the concrete structures can be much bigger, more gigantic and much ultra-high. And as another benefit which is generated thanks to the enhancement of the durability performance, the maintenance expenses are also saved. However, since low W/B ultra-high concrete has a high possibility that many cracks can occur in the initial period due to the self-shrinkage caused by the self-desiccation as one of the blending characteristics, the problem becomes bigger by influencing the safety of a structure. Therefore, in this study, it is intended to analyze the effects of substituting some limestone-based ultra-high strength mortar with electric arc furnace oxidizing slag fine aggregates on the self-shrinkage of mortar.

  • PDF

석탄회 종류에 따른 석탄회를 대량 사용한 콘크리트의 내구특성에 관한 연구 (A Study on the Durabilities of High Volume Coal Ash Concrete by the Kinds of Coal Ash)

  • 최세진;김무한
    • 한국건축시공학회지
    • /
    • 제9권3호
    • /
    • pp.73-78
    • /
    • 2009
  • Coal ash is a by-product of the combustion of pulverized coal, and much of this is dumped in landfills. The disposal of coal ash is one of the major issues for environmental problems. In this paper, the effects of the kinds and replacement ratio of coal ash on the durabilities of concrete mixtures are investigated. Fine aggregate was replaced with coal ash(fly ash and bottom ash) in five different ratios, of 0%, 10%, 20%, 35%, and 50% by volume. Test results indicated that the compressive strength increased with the increase in fly ash percentage. The loss of compressive strength of bottom ash concrete mixes after immersion in sulphuric acid solution was less than in the control mix(BA0). In addition, the carbonation depth of fly ash concrete mixes was lower than the control mix(FA0).

잔골재 및 혼화재 종류에 따른 콘크리트의 폭열 성상에 관한 실험적 연구 (An Experimental study on Explosive spalling of Concrete According to Kinds of Fine Aggregate and Admixture)

  • 장재봉;김갑수;김재환;김용로;권영진;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.667-670
    • /
    • 2003
  • The purpose of this study is to present data for the reusing, reinforcement and estimation of safety of the RC structure damaged by fire, and for the prevention of explosive spalling by checking the character of explosive spalling according to kinds of fine aggregate, admixture and water-cement ratios. The materials used fine aggregates were sea sand, crushed sand and recycled sand, and the admixtures were fly ash and blast-furnace slag. Also the water-cement ratios was 55% and 30.5%. After those were heated respectively for 30 and 60 minutes in accordance with Standard Time-Temperature Curve. And then conditions of explosive spalling were divided into five grades, and characters of explosive spalling were investigated.

  • PDF

재생골재 콘크리트의 강도 조기추정 및 비파괴실험 적용성에 관한 연구(II) -제 2보- 비파괴시험 (A Study on the Application of Early Estimation Methods and Non-Destructive Testing for the Strength of Recycled Aggregate Concrete(II) -Part 2 : Non-Destructive Testing-)

  • 윤기원;최청각;한천구;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 가을 학술발표회 논문집
    • /
    • pp.61-64
    • /
    • 1993
  • This study is aimed to analyze the influencing factor on the non-destructive testing by measuring rebound number of schmidt hammer and ultrasonic pulse velocity according to the variation of recycled aggregate kinds. And this study is to provide the reference data on application of practical use.

  • PDF

Influence of the Quality of Recycled Aggregates on Microstructures and Strength Development of Concrete

  • Moon Dae-Joong;Moon Han-Young;Kim Yang-Bae
    • 콘크리트학회논문집
    • /
    • 제16권6호
    • /
    • pp.875-881
    • /
    • 2004
  • The quality of recycled aggregate is affected by original concrete strength and the manufacturing process of recycled aggregates. In this study, the porosity of old and new mortar, and the compressive strength of concrete were investigated to examine the influence of recycled aggregate on the concrete. Six kinds of recycled coarse aggregates were produced from concrete blocks of differing strength levels (A:60. 1MPa, B:41.7MPa, C:25.5MPa). Original concrete strength and the bond mortar of recycled aggregate influences the pore structures of both old and new mortar. The pore size distribution of old mortar was found to be greatly affected by age, and the reduction of the porosity of bond mortar on low strength recycled aggregate increased at a greater rate than that of bond mortar on high strength recycled aggregate. The pore size distribution of new mortar in recycled aggregate concrete changed in comparison with that of new mortar in virgin aggregate concrete. The total porosity of new mortar using B level recycled aggregates was smaller than that of new mortar with A, and C level recycled aggregates. Moreover, the compressive strength of recycled aggregate concrete was found to have been affected by original concrete strength. The compressive strength of concrete only changed slightly in the porosity of new mortar over $15\%$, but increased rapidly in the porosity of new mortar fewer than $15\%$.