• 제목/요약/키워드: keywords

검색결과 2,424건 처리시간 0.035초

A Study on the Promotion of Yakseon Food Using Big Data

  • LEE, JINHO;KIM, AE SOOK;Hwang, Chi-Gon;Ryu, Gi Hwan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권4호
    • /
    • pp.41-46
    • /
    • 2022
  • The purpose of this study is to confirm and analyze the impact on consumers through big data keyword analysis on weak food. For data collection, web documents, blogs, news, cafes, intellectuals, academic information, and Google Web, news, and Facebook provided by Naver and Daum were used as analysis targets. The data analysis period was set from January 2018 to December 2021. For data collection and analysis, the frequency and matrix of keywords were extracted through Textom, a social matrix site, and the relationship and connection centrality between keywords were analyzed and visualized using the Netdraw function among UCINET6 programs. In addition, CONCOR analysis was conducted to derive clusters for similar keywords. As a result of analyzing yakseon food with keywords, a total of 35,985 cases of collected data were derived. Through this, it was confirmed that medicinal food affects consumers. Furthermore, if a business model is created and developed through yakseon food, it will be possible to lead the popularization of yakseon food.

Association Modeling on Keyword and Abstract Data in Korean Port Research

  • Yoon, Hee-Young;Kwak, Il-Youp
    • Journal of Korea Trade
    • /
    • 제24권5호
    • /
    • pp.71-86
    • /
    • 2020
  • Purpose - This study investigates research trends by searching for English keywords and abstracts in 1,511 Korean journal articles in the Korea Citation Index from the 2002-2019 period using the term "Port." The study aims to lay the foundation for a more balanced development of port research. Design/methodology - Using abstract and keyword data, we perform frequency analysis and word embedding (Word2vec). A t-SNE plot shows the main keywords extracted using the TextRank algorithm. To analyze which words were used in what context in our two nine-year subperiods (2002-2010 and 2010-2019), we use Scattertext and scaled F-scores. Findings - First, during the 18-year study period, port research has developed through the convergence of diverse academic fields, covering 102 subject areas and 219 journals. Second, our frequency analysis of 4,431 keywords in 1,511 papers shows that the words "Port" (60 times), "Port Competitiveness" (33 times), and "Port Authority" (29 times), among others, are attractive to most researchers. Third, a word embedding analysis identifies the words highly correlated with the top eight keywords and visually shows four different subject clusters in a t-SNE plot. Fourth, we use Scattertext to compare words used in the two research sub-periods. Originality/value - This study is the first to apply abstract and keyword analysis and various text mining techniques to Korean journal articles in port research and thus has important implications. Further in-depth studies should collect a greater variety of textual data and analyze and compare port studies from different countries.

Analysis of Covid-19, Tourism, Stress Keywords Using Social Network Big Data_Semantic Network Analysis

  • Yun, Su-Hyun;Moon, Seok-Jae;Ryu, Ki-Hwan
    • International Journal of Advanced Culture Technology
    • /
    • 제10권1호
    • /
    • pp.204-210
    • /
    • 2022
  • From the 1970s to the present, the number of new infectious diseases such as SARS, Ebola virus, and MERS has steadily increased. The new infectious disease, COVID-19, which began in Wuhan, Hubei Province, China, has pushed the world into a pandemic era. As a result, Countries imposed restrictions on entry to foreign countries due to concerns over the spread of COVID-19, which led to a decrease in the movement of tourists. Due to the restriction of travel, keywords such as "Corona blue" have soared and depression has increased. Therefore, this study aims to analyze the stress meaning network of the COVID-19 era to derive keywords and come up with a plan for a travel-related platform of the Post-COVID 19 era. This study conducted analysis of travel and stress caused by COVID-19 using TEXTOM, a big data analysis tool, and conducted semantic network analysis using UCINET6. We also conducted a CONCOR analysis to classify keywords for clustering of words with similarities. However, since we have collected travel and stress-oriented data from the start to the present, we need to increase the number of analysis data and analyze more data in the future.

셀피의 의미연결망 분석과 AR 카메라 앱 사용이 외모만족도와 자아존중감에 미치는 영향 (Effects of selfie semantic network analysis and AR camera app use on appearance satisfaction and self-esteem)

  • 이현정
    • 복식문화연구
    • /
    • 제30권5호
    • /
    • pp.766-778
    • /
    • 2022
  • Image-oriented information is becoming increasingly important on social networking services (SNS); the background of this trend is the popularity of selfies. Currently, camera applications using augmented reality (AR) and artificial intelligence (AI) technologies are gaining traction. An AR camera app is a smartphone application that converts selfies into various interesting forms using filters. In this study, we investigated the change of keywords according to the time flow of selfies in Goolgle News articles through semantic network analysis. Additionally, we examined the effects of using an AR camera app on appearance satisfaction and self-esteem when taking a selfie. Semantic network analysis revealed that in 2013, postings of specific people were the most prominent selfie-related keywords. In 2019, keywords appeared regarding the launch of a new smartphone with a rear-facing camera for selfies; in 2020, keywords related to communication through selfies appeared. As a result of examining the effect of the degree of use of the AR camera app on appearance satisfaction, it was found that the higher the degree of use, the higher the user's interest in appearance. As a result of examining the effect of the degree of use of the AR camera app on self-esteem, it was found that the higher the degree of use, the higher the user's negative self-esteem.

감정 기반 키워드 속성값 산출에 따른 글꼴 추천 서비스 (Font Recommendation Service Based on Emotion Keyword Attribute Value Estimation)

  • 지영서;임순범
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.999-1006
    • /
    • 2022
  • The use of appropriate fonts is not only an aesthetic point of view, but also a factor influencing the reinforcement of meaning. However, it is a difficult process and wastes a lot of time for general users to choose a font that suits their needs and emotions. Therefore, in this study, keywords and fonts to be used in the experiment were selected for emotion-based font recommendation, and keyword values for each font were calculated through an experiment to check the correlation between keywords and fonts. Using the experimental results, a prototype of a keyword-based font recommendation system was designed and the possibility of the system was tested. As a result of the usability evaluation of the font recommendation system prototype, it received a positive evaluation compared to the existing font search system, but the number of fonts was limited and users had difficulties in the process of associating keywords suitable for their desired situation. Therefore, we plan to expand the number of fonts and conduct follow-up research to automatically recommend fonts suitable for the user's situation without selecting keywords.

Analysis of Infertility Keywords in the Largest Domestic Mom Cafe Bulletin Board in Korea Using Text Mining

  • Sangmin Lee
    • 인터넷정보학회논문지
    • /
    • 제24권4호
    • /
    • pp.137-144
    • /
    • 2023
  • The purpose of this study is to examine consumers' perceptions of domestic infertility support policies based on infertility-related keywords and the trends of their changes. To this end, Momsholic, a mom cafe which has the most active infertility-related bulletin boards on Naver, was selected as the analysis target, and 'infertility' was selected as a keyword for data search. The data was collected for three months. In addition, network analysis and visualization were performed using R for data collection and analysis, and cross-validation was attempted using the NetDraw function of 'textom 1.0' and the UCINET6 program. As a result of the analysis, the main keywords were cost, artificial insemination, in vitro fertilization, freezing, harvest, ovulation, and how much. Next, looking at the central value of the degree of connection, it was found that the degree of connection between the words cost, cost, how much, problem, public health center, and artificial insemination was high. According to the results of this study, women who visit mom cafes due to infertility in Korea are more interested in the cost. It is believed to be closely related to infertility treatment as well as in vitro fertilization and egg freezing. Therefore, by examining keywords related toinfertility, it has academic significance in that it is possible to identify major factors that end users are interested in. Furthermore, it is possible to redefine the guidelines for domestic infertility support policies by presenting infertility support policies that reflect the factors of interest of end consumers.

건축공사감리 문서 기반 연관규칙 및 비용효율성 분석 모델 (A Study on Association Rule and Cost Efficiency Analysis Model Using Construction Supervision Reports)

  • 송태근;유위성
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.389-390
    • /
    • 2023
  • To improve the cost performance of construction sites, various systems and standards are constantly being developed and implemented. Although legal requirements for these system and standard improvements have been increasing, the cost efficiency performance of construction sites remains stagnant. We have digitized documents generated through construction supervision work at 39 building construction sites and proposed a model that can support decision-making in cost efficiency evaluation. This model selects key keywords that are considered to be highly related to cost efficiency by identifying the patterns and relationships of keywords through associated rule analysis and social network analysis using keywords derived from documents. In addition, it is expected to be used as a decision-making aid to determine the cost efficiency of a specific building construction site by establishing a logistic regression model using core keywords. As a systematic database of construction supervision documents and an integrated system of massive data generated by digital technology are established in the future, the accuracy and reliability of the cost efficiency evaluation model are expected to be reinforced.

  • PDF

IPTV의 VOD 어노테이션을 위한 반자동 온톨로지 모델링 (Semi-automatic Ontology Modeling for VOD Annotation for IPTV)

  • 최정화;허길;박영택
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권7호
    • /
    • pp.548-557
    • /
    • 2010
  • 본 연구는 IPTV의 지능형 검색을 가능하게 하는 VOD 어노테이션을 위해 효율적인 반자동 온톨로지 모델링 기법을 제안한다. 제안하는 방법은 워드넷(WordNet)으로 부터 특정 도메인(또는 장르)을 대표하는 콘텐츠에 관련된 키워드의 상 하위어와 동의어에 해당하는 부분 트리를 추출하고, 워드넷에 없는 외래어, 한자어 등은 확장하여 콘텐츠 온톨로지를 구축한다. 이 온톨로지는 보편적 계층구조와 특정 계층구조를 생성한다. 전자는 콘텐츠와 관련 키워드를 제약 기술(description)을 포함하는 클래스로 정의한 어휘의 의미 모델이다. 후자는 생성된 모델에 함의관계(subsumption) 추론 기술을 적용하여 키워드를 관련있는 콘텐츠로 추론한 모델이다. 어노테이션은 이 온톨로지를 기반으로 VOD에 콘텐츠와 장르의 메타데이터를 의미 기반으로 생성한다. 보편적 계층구조는 서비스 도메인에 독립적으로 재사용이 가능하며, 특정 계층구조는 서비스 목적에 맞는 완전하고 함축적인 모델을 생성한다. 제안하는 방법은 서비스 도메인에 상관없이 적용 가능한 알고리즘이며, 2,400건의 테스트 데이터로 어노테이션 결과를 평가하여 82%의 정확도를 보였다.

유사 단어 커뮤니티 기반의 질의 확장 (Query Expansion based on Word Sense Community)

  • 곽창욱;윤희근;박성배
    • 정보과학회 논문지
    • /
    • 제41권12호
    • /
    • pp.1058-1065
    • /
    • 2014
  • 질의 확장은 입력된 질의와 관련된 키워드를 사용자에게 제시하여 검색 활동에 도움을 주는 방법이다. 최근에는 사용자가 검색한 내용에서 군집화 방법을 이용하여 도메인을 찾고 키워드를 제시하는 연구가 많이 이루어졌다. 하지만 군집화 방법은 군집의 개수를 정해야하기 때문에 다양한 도메인을 나타내는데 적절하지 않다. 따라서 본 논문은 커뮤니티 인지 알고리즘으로 검색 문서에서 질의마다 다양한 수의 도메인을 찾고 키워드로 선택하여 제시하는 방법을 제안한다. 이를 위해 사용자가 검색한 결과 중 상위 30개 문서를 대상으로 단어를 추출하여 그래프 기반의 커뮤니티를 만들고, 각 커뮤니티에서 키워드를 추출하여 이를 질의 확장에 이용하였다. 본 논문에서 제안한 방법은 구글 검색 엔진과 검색된 문서의 tf-idf를 이용한 키워드 추천 방법과 비교하였다. 제안한 방법이 다른 비교 대상들에 비해 더 다양한 키워드를 추천할 수 있었다.

Z세대 패션에 대한 소셜미디어의 빅데이터 분석 (Social media big data analysis of Z-generation fashion)

  • 성광숙
    • 한국의상디자인학회지
    • /
    • 제22권3호
    • /
    • pp.49-61
    • /
    • 2020
  • This study analyzed the social media accounts and performed a Big Data analysis of Z-generation fashion using Textom Text Mining Techniques program and Ucinet Big Data analysis program. The research results are as follows: First, as a result of keyword analysis on 67.646 Z-generation fashion social media posts over the last 5 years, 220,211 keywords were extracted. Among them, 67 major keywords were selected based on the frequency of co-occurrence being greater than more than 250 times. As the top keywords appearing over 1000 times, were the most influential as the number of nodes connected to 'Z generation' (29595 times) are overwhelmingly, and was followed by 'millennials'(18536 times), 'fashion'(17836 times), and 'generation'(13055 times), 'brand'(8325 times) and 'trend'(7310 times) Second, as a result of the analysis of Network Degree Centrality between the key keywords for the Z-generation, the number of nodes connected to the "Z-generation" (29595 times) is overwhelmingly large. Next, many 'millennial'(18536 times), 'fashion'(17836 times), 'generation'(13055 times), 'brand'(8325 times), 'trend'(7310 times), etc. appear. These texts are considered to be important factors in exploring the reaction of social media to the Z-generation. Third, through the analysis of CONCOR, text with the structural equivalence between major keywords for Gen Z fashion was rearranged and clustered. In addition, four clusters were derived by grouping through network semantic network visualization. Group 1 is 54 texts, 'Diverse Characteristics of Z-Generation Fashion Consumers', Group 2 is 7 Texts, 'Z-Generation's teenagers Fashion Powers', Group 3 is 8 Texts, 'Z-Generation's Celebrity Fashions' Interest and Fashion', Group 4 named 'Gucci', the most popular luxury fashion of the Z-generation as one text.