The Journal of Korean Institute of Communications and Information Sciences
/
v.40
no.12
/
pp.2485-2487
/
2015
Recently, Hashtag is widely used in SNS like Facebook, Twitter and personal blogs. However, the efficiency of tag search system is poor due to the indiscriminate use of hashtags. To enhance the accuracy of tag search system, we proposed a tag search system using the keyword extraction and similarity evaluation. The experimental results show that the proposed system provides the higher accuracy on tag search results.
The increasing interests on patents have led many individuals and companies to apply for many patents in various areas. Applied patents are stored in the forms of electronic documents. The search and categorization for these documents are issues of major fields in data mining. Especially, the keyword extraction by which we retrieve the representative keywords is important. Most of techniques for it is based on vector space model. But this model is simply based on frequency of terms in documents, gives them weights based on their frequency and selects the keywords according to the order of weights. However, this model has the limit that it cannot reflect the relations between keywords. This paper proposes the advanced way to extract the more representative keywords by overcoming this limit. In this way, the proposed model firstly prepares the candidate set using the vector model, then makes the graph which represents the relation in the pair of candidate keywords in the set and selects the keywords based on this relationship graph.
Keyword extraction can be utilized in text mining of massive documents for efficient extraction of subject or related words from the document. In this study, we proposed a hierarchical graph model based on the co-occurrence relationship, the intrinsic dependency relationship between words, and common sub-word in a single document. In addition, the enhanced TextRank algorithm that can reflect the influences of outgoing edges as well as those of incoming edges is proposed. Subsequently a novel keyword extraction scheme using the proposed hierarchical graph model and the enhanced TextRank algorithm is proposed to extract representative keywords from a single document. In the experiments, various evaluation methods were applied to the various subject documents in order to verify the accuracy and adaptability of the proposed scheme. As the results, the proposed scheme showed better performance than the previous schemes.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.11
/
pp.2133-2138
/
2017
The analysis of existing XML documents and other documents was centered on words. It can be implemented using a morpheme analyzer, but it can classify many words in the document and cannot grasp the core contents of the document. In order for a user to efficiently understand a document, a paragraph containing a main word must be extracted and presented to the user. The proposed system retrieves keyword in the normalized XML document. Then, the user extracts the paragraphs containing the keyword inputted for searching and displays them to the user. In addition, the frequency and weight of the keyword used in the search are informed to the user, and the order of the extracted paragraphs and the redundancy elimination function are minimized so that the user can understand the document. The proposed system can minimize the time and effort required to understand the document by allowing the user to understand the document without reading the whole document.
In this paper about 60 auxiliary words and 320 stopwords are selected from analysis of sample data, four types of stop word are classified left, right and - auxiliary word truncation & normal. And a keyword extraction system is suggested which undertakes efficient truncation of auxiliary word from words, conversion of Chinese word to Korean and exclusion of stopword. The selected keyeords in this system show 92.2% of accordance ratio compared with manually selected keywords by expert. And then compound words consist of $4{\sim}6$ character generate twice of additional new words and 58.8% words of those are useful as keyword.
Park, Dan-Ho;Choi, Won-Sik;Kim, Hong-Jo;Lee, Seok-Lyong
The KIPS Transactions:PartD
/
v.19D
no.4
/
pp.263-270
/
2012
With the current development of high speed Internet and massive database technology, the amount of web documents increases rapidly, and thus, classifying those documents automatically is getting important. In this study, we propose an effective method to extract document features based on Hangeul morpheme and keyword analyses, and to classify non-structured documents automatically by predicting subjects of those documents. To extract document features, first, we select terms using a morpheme analyzer, form the keyword set based on term frequency and subject-discriminating power, and perform the scoring for each keyword using the discriminating power. Then, we generate the classification model by utilizing the commercial software that implements the decision tree, neural network, and SVM(support vector machine). Experimental results show that the proposed feature extraction method has achieved considerable performance, i.e., average precision 0.90 and recall 0.84 in case of the decision tree, in classifying the web documents by subjects.
The Journal of Korean Association of Computer Education
/
v.6
no.2
/
pp.23-31
/
2003
In general, people use a key word or a phrase as the name of field or subject word in document. This paper has focused on keyword extraction. First of all, we investigate that an author suggests keywords that are not occurred as contents words in literature, and present generation rules to combine compound keywords based on concept of lexical information. Moreover, we present a new importance measurement to avoid useless keywords that are not related to documents' contents. To verify the validity of extraction result, we collect titles and abstracts from research papers about natural language and/or voice processing studies, and obtain the 96% precision in a top rank of extraction result.
Journal of Fisheries and Marine Sciences Education
/
v.28
no.3
/
pp.872-880
/
2016
The purpose of this study is to find the research trends relating to flipped learning through keyword network analysis. For investigating this topic, final 100 papers (removed due to overlap in all 205 papers) were selected as subjects from the result of research databases such as RISS, DBPIA, and KISS. After keyword extraction, coding, and data cleaning, we made a 2-mode network with final 202 keywords. In order to find out the research trends, frequency analysis, social network structural property analysis based on co-keyword network modeling, and social network centrality analysis were used. Followings were the results of the research: (a) Achievement, writing, blended learning, teaching and learning model, learner centered education, cooperative leaning, and learning motivation, and self-regulated learning were found to be the most common keywords except flipped learning. (b) Density was .088, and geodesic distance was 3.150 based on keyword network type 2. (c) Teaching and learning model, blended learning, and satisfaction were centrally located and closed related to other keywords. Satisfaction, teaching and learning model blended learning, motivation, writing, communication, and achievement were playing an intermediary role among other keywords.
The present study was performed to investigate the general research trends of dyslexia and learning disability to explore the centrality of related variables though analysis of keyword networks. Data were collected from ten years articles research information sharing service(RISS) which is provided by korea education and research information service(KERIS). The research subjects selected for the analysis were keyword cleansing work, extraction major keyword using KrKwic program and using NodeXL program to Visualize the center of connection between keyword. The results of this were as follows. First, totally 72 of keyword were extracted from keyword cleansing process and among those keyword. major keywords included learning disability, dyslexia, RTI. Second, analysis of the betweenness centrality of dyslexia and learing disabilities shows that learning disabilities are a key word that has been addressed in the study of dyslexia and learning disabilities in korea. The results of these studies suggest a method of analyzing trends in qualitative and qualitative analysis in relation to dyslexia and learning disorder.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2001.12a
/
pp.117-120
/
2001
In this work, we propose a new method of extracting and weighting representative keywords(RKs) from a few documents that might interest a user. In order to extract RKs, we first extract candidate terms and then choose a number of terms called initial representative keywords (IRKS) from them through fuzzy inference. Then, by expanding and reweighting IRKS using term co-occurrence similarity, the final RKs are obtained. Performance of our approach is heavily influenced by effectiveness of selection method of IRKS so that we choose fuzzy inference because it is more effective in handling the uncertainty inherent in selecting representative keywords of documents. The problem addressed in this paper can be viewed as the one of calculating center of document vectors. So, to show the usefulness of our approach, we compare with two famous methods - Rocchio and Widrow-Hoff - on a number of documents collections. The results show that our approach outperforms the other approaches.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.