• Title/Summary/Keyword: key to species

Search Result 1,356, Processing Time 0.032 seconds

Disinfection of Fusarium-infected Rice Seeds by Prochloraz and Gaseous Chlorine Dioxide

  • Jeon, Young-ah;Lee, Young-yi;Lee, Ho-sun;Sung, Jung-sook;Lee, Seokyoung
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.25-25
    • /
    • 2014
  • Three species of Fusarium, F. fujikuroi, F. verticillioides and F. proliferatum, are known to be associated with bakanae disease of rice [1, 2]. F. fujikuroi infects rice flowers and survive in endosperm and embryo of the seeds. Infected seed is an important source of primary inoculum of pathogens [3]. Seeds of rice (Oryza sativa cv. Boramchan) collected from bakanae-infected field were found to be 96% infected with Fusarium sp., 52% with F. fujikuroi, 42% with F. verticillioides, and 12% with F. proliferatum as determined by incubation method and species-specific PCR assays. F. fujikuroi was detected at lemma/palea, endosperm and embryo whereas F. verticillioides and F. proliferatum were recovered only from lemma/palea by means of component plating test. Seed disinfection methods have been developed to control bakanae disease and prochloraz has been most widely used for rice seeds. Two chemicals formulated with prochloraz (PC 1) and prochloraz + hexaconazole (PC 2) that inhibit biosynthesis of ergosterol strongly reduced the incidence of Fusarium spp. on selective media to 4.7% and 2.0%, respectively. Disease symptoms of rice seedlings in nursery soil were alleviated by chemical treatment; seedlings with elongated leaves or wide angle between leaf and stem were strikingly reduced from 15.6 to 3.2% (PC 1) and 0 (PC 2), stem rots were reduced from 56.9 to 26.2% (PC 1) and 32.1% (PC 2), and normal seedling increased from 0.4 to 13.3% (PC 2). Prochloraz has some disadvantages and risks such as the occurrence of tolerant pathogens [4] and effects on the sterol synthesis in animals and humans [5]. For these reasons, it is necessary to develop new disinfection method that do not induce fungal tolerance and are safe to humans and animals. Chlorine dioxide ($ClO_2$), that is less toxic, produces no harmful byproducts, and has high oxidizing power, has been reported to be effective at disinfection of several phytopathogenic fungi including Colletotrichum spp. and Alternaria spp. [6]. Gaseous $ClO_2$ applied to rice seeds at a concentration of 20 ppm strongly suppressed mycelial growth of Fusarium fujikuroi, F. verticillioides and F. proliferatum. The incidence of Fusarium spp. in dry seed with 8.7% seed moisture content (SMC) tended to decrease as the concentration of $ClO_2$ increased from 20 to 40 ppm. Applying 40 ppm $ClO_2$ at 90% relative humidity, incidence was reduced to 5.3% and resulted in significant reduction of disease symptoms on MS media. In nursery soil, stem rot was reduced from 56.9 to 15.4% and the number of normal seedlings increased from 0.4 to 25.5%. With water-soaked seeds (33.1% SMC) holding moisture in the endosperm and embryo, the effectiveness of disinfection using $ClO_2$ increased, even when treated with only 20 ppm for four hours. This suggests that moisture was a key element for action of $ClO_2$. Removal of the palea and lemma from seeds significantly decreased the incidence of Fusarium spp. to 3.0%. Seed germination appeared to decrease slightly by water-soaking at $30^{\circ}C$ because of increased SMC and by physical damage of embryos from hulling. These results indicate that the use of gaseous $ClO_2$ was effective as a means to disinfect rice seeds infected with Fusarium spp. and that moisture around the pathogens in the seed was an important factor for the action of $ClO_2$. Further investigations should be conducted to ascertain the best conditions for complete disinfection of Fusarium spp. that infect deep site of rice seeds.

  • PDF

Hypotriglyceridemic effects of brown seaweed consumption via regulation of bile acid excretion and hepatic lipogenesis in high fat diet-induced obese mice

  • Han, A-Reum;Kim, Jae-Hoon;Kim, Eunyoung;Cui, Jiamei;Chai, In-Suk;Zhang, Guiguo;Lee, Yunkyoung
    • Nutrition Research and Practice
    • /
    • v.14 no.6
    • /
    • pp.580-592
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: The present study aimed to further investigate the potential health beneficial effects of long-term seaweed supplementation on lipid metabolism and hepatic functions in DIO mice. MATERIALS/METHODS: Four brown seaweeds (Undaria pinnatifida [UP], Laminaria japonica [LJ], Sargassum fulvellum [SF], or Hizikia fusiforme [HF]) were added to a high fat diet (HFD) at a 5% ratio and supplemented to C57BL/6N mice for 16 weeks. Triglycerides (TGs) and total cholesterol (TC) in the liver, feces, and plasma were measured. Fecal bile acid (BA) levels in feces were monitored. Hepatic insulin signaling- and lipogenesis-related proteins were evaluated by Western blot analysis. RESULTS: Fasting blood glucose levels were significantly reduced in the LJ, SF, and HF groups compared to the HFD group by the end of 16-week feeding period. Plasma TG levels and hepatic lipid accumulation were significantly reduced in all 4 seaweed supplemented groups, whereas plasma TC levels were only suppressed in the UP and HF groups compared to the HFD group. Fecal BA levels were significantly elevated by UP, LJ, and SF supplementation compared to HFD feeding only. Lastly, regarding hepatic insulin signaling-related proteins, phosphorylation of 5'-AMP-activated protein kinase was significantly up-regulated by all 4 types of seaweed, whereas phosphorylation of protein kinase B was up-regulated only in the SF and HF groups. Lipogenesis-related proteins in the liver were effectively down-regulated by HF supplementation in DIO mice. CONCLUSIONS: Brown seaweed consumption showed hypotriglyceridemic effects in the prolonged DIO mouse model. Specifically, combinatory regulation of BA excretion and lipogenesis-related proteins in the liver by seaweed supplementation contributed to the reduction of plasma and hepatic TG levels, which inhibited hyperglycemia in DIO mice. Thus, the discrepant and species-specific functions of brown seaweeds provide novel insights for the selection of future targets for therapeutic agents.

Effects of Nicotine, Cotinine and Benzopyrene as Smoke Components on the Expression of Antioxidants in Human Bronchial Epithelial Cells (흡연성분 중 Nicotine, Cotinine, Benzopyrene이 인체 기관지 상피세포에서 항산화제의 발현에 미치는 영향)

  • Kim, Yong Seok;Lee, Jae Hyung;Kim, Sang Heon;Kim, Tae Hyung;Sohn, Jang Won;Yoon, Ho Joo;Park, Sung Soo;Shin, Dong Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.3
    • /
    • pp.197-202
    • /
    • 2007
  • Background: Cigarette smoking is an important risk factor for chronic bronchitis and COPD. Airway epithelial cells exposed to cigarette smoke components such as nicotine, cotinine and benzopyrene can generate reactive oxygen species (ROS) and be subject to oxidative stress. This oxidative stress can induce the inflammatory response in the lung by the oxidant itself or by the release of proinflammatory cytokines. It has been reported that nicotine stimulates ROS, which are associated with NF-${\kappa}B$. Methods: Beas2B cells were treated with nicotine, cotinine and benzopyrene. RT PCR was used to measure the expression of several antioxidant factors using the total RNA from the Beas2B cells. The level of superoxide dismutase(CuZnSOD), thioredoxin, glutathione reductase expression was examined. Results: 0.5 to 4 hours after the benzopyrene, nicotine and cotinine theatments, the level of thioredoxin and glutathione reductase expression decreased. Longer exposure to these compounds for 24 to 72 hours inhibited the expression of most of these antioxidant factors. Conclusion: During exposure to smoke compounds, thioredoxin and glutathione reductase are the key antioxidant factors induced sensitively between 0.5 and 4 hours but the levels these antioxidants decrease between 24 hour and 72hours.

Identification and Molecular Characterization of Methionine Sulfoxide Reductase B Gene in Rice Blast Fungus, Magnaporthe oryzae (벼도열병균에서의 methionine sulfoxide reductase B 유전자의 분자적 특성)

  • Kim, Jeong-Hwan;Kim, Jin-Soo;Jeong, Mi-Yeon;Choi, Woo-Bong
    • Journal of Life Science
    • /
    • v.19 no.3
    • /
    • pp.343-348
    • /
    • 2009
  • Magnaporthe oryzae, a major cause of rice blast, is one of the most destructive plant fungal pathogens. Secretion of reactive oxygen species (ROS) during the infection phase of plant pathogenic fungus plays a key role in the defense mechanism of a plant. ROS causes oxidative damage and functional modification to the proteins in a pathogenic fungus. Methionine, especially, is a major target of ROS, which oxidizes it to methionine sulfoxide. To survive from the attack of ROS, plant pathogenic fungus has antioxidative systems - one example would be methionine sulfoxide reductase B (MSRB), which reverses the oxidative alteration of methionine to methionine sulfoxide. In the present study, identification and molecular characterization of the MSRB gene in M. oryzae KJ201 were investigated. The MSRB gene was amplified by PCR from the M. oryzae KJ201 genomic DNA. The copy number of MSRB in the genome of M. oryzae KJ201 was identified by Southern blot analysis, which revealed that the gene exists as a single copy. To study the molecular function of an MSRB gene, the expression level of the MSRB gene was assayed with hydrogen peroxide treatment by Northern blot analysis and RT-PCR. The expression of the MSRB gene was increased by treatment of hydrogen peroxide, without significant correlation to hydrogen peroxide concentrations. These results indicate that the MSRB gene in M. oryzae KJ201 could contribute to protection against plant defense compounds such as ROS and offer a novel strategy for the control of rice blast.

Structure-dependent Mechanism of Action of Poly Aromatic Hydrocarbons in Cultured Primary Hepatocytes (간세포에서 PAH의 구조 의존적 작용기전)

  • Kim Sun-Young;Hong Sung-Bum;Yang Jae-Ho
    • Toxicological Research
    • /
    • v.22 no.1
    • /
    • pp.23-30
    • /
    • 2006
  • Among poly aromatic hydrocarbons, dioxin and PCBs are the most controversial environmental pollutants in our modern life. These pollutants are known as human carcinogens, and liver is the most sensitive target in animal cancer models. Specific aims of the study were focused on the mechanism of carcinogenesis in hepatocytes and the structure-activity relation among these diverse environmental chemicals. Because key mechanisms of dioxin-induced carcinogenesis in human epithelial cell model are the alteration of signal transduction pathway and PKC isoforms, the alteration of the signal transduction pathways and other factors associated with carcinogenesis were studied. Rat hepatocytes cultured under the sandwich protocols were exposed with the various concentration of dioxins and PCBs, and signal transduction pathway, protein kinase C isoforms, oxidant stress, and apoptotic nuclei were evaluated. Since it is important to understand the structure-activity relation among these chemicals to properly assess the carcinogenic potentials, the study analyzed the parameters associated with carcinogenic processes, based on their structural characteristics. In addition, signal transduction pathways and PKC isoforms involved in inhibition of UV-induced apoptosis were also analyzed to elaborate the tumor promotion mechanism of these chemicals. Induction of apoptosis by UV irradiation was optimal at $60\;J/m^2$ in primary hepatocyte in culture. Compared to non coplanar PCBs such as PCB 114 and PCB 153, coplanar PCBs such as PCB 77 and PCB126 showed a stronger inhibition of apoptosis induced by UV irradiation. Production of reactive oxygen species (ROS) was more stimulated by non-coplanar PCBs than coplanar PCBs with the most potent induction of ROS by chlorinated non-coplanar PCB. As compared to the level of induction by PCB126, non-coplanar PCB153 showed a higher increase of intracellular concentrations. Besides the alteration of intracellular calcium concentration, translocation of PKC from cytosolic fraction to membrane fraction was clearly observed upon the exposure of non-coplanar PCB. Taken together, the present study demonstrated that there is a potent structure-activity relationship among PCB congeners and the mechanism of PAH-induced carcinogenesis is structure-specific. The study suggested that more diverse pathways of PAH-induced carcinogenesis should be taken into account beyond the boundary of Ah receptor dogma to assess the health impact of PAH with more accuracy.

Strategies for Managing Dementia Patients through Improving Oral Health and Occlusal Rehabilitation: A Review and Meta-analysis

  • Yeon-Hee Lee;Sung-Woo Lee;Hak Young Rhee;Min Kyu Sim;Su-Jin Jeong;Chang Won Won
    • Journal of Korean Dental Science
    • /
    • v.16 no.2
    • /
    • pp.128-148
    • /
    • 2023
  • Dementia is an umbrella term that describes the loss of thinking, memory, attention, logical reasoning, and other mental abilities to the extent that it interferes with the activities of daily living. More than 50 million individuals worldwide live with dementia, which is expected to increase to 131 million by 2050. Recent research has shown that poor oral health increases the risk of dementia, while oral health declines with cognitive decline. In this narrative review, the literature was based on the "hypothesis" that dementia and oral health have a close relationship, and appropriate oral health and occlusal rehabilitation treatment can improve the quality of life of patients with dementia and prevent progression. We conducted a literature search in PubMed and Google Scholar databases, using the search terms "dementia," "major neurocognitive disorder," "dentition," "occlusion," "tooth loss," "dental prosthesis," "dental implant," and "occlusal rehabilitation" in the title field over the past 30 years. A total of 131 studies that scientifically addressed dementia, oral health, and/or oral rehabilitation were included. In a meta-analysis, the random effect model demonstrated significant tooth loss increasing the dementia risk 3.64-fold (pooled odds ratio=3.64, 95% confidence interval [2.50~5.32], P-value=0.0348). Tooth loss can be an important indicator of cognitive function decline. As the number of missing teeth increases, the risk of dementia increases. Loss of teeth can lead to a decrease in the ascending information to the brain and reduced masticatory ability, cerebral blood flow, and psychological atrophy. Oral microbiome dysbiosis and migration of key bacterial species to the brain can also cause dementia. Additionally, inflammation in the oral cavity affects the inflammatory response of the brain and the complete body. Conversely, proper oral hygiene management, the placement of dental implants or prostheses to replace lost teeth, and the restoration of masticatory function can inhibit symptom progression in patients with dementia. Therefore, improving oral health can prevent dementia progression and improve the quality of life of patients.

Modeling the Fate and Transport of Arsenic in Wetland Sediments (습지 퇴적물에서 비소의 성상과 이동 모의에 관한 수학적 모형)

  • Park, Seok-Soon;Wang, Soo-Kyun
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.434-446
    • /
    • 2003
  • The fate and transport of many trace metals, metalloids, and radionuclides in porous media is closely linked to the biogeochemical reactions that occur as a result of organic carbon being sequentially degraded by different microorganisms using a series of terminal electron acceptors. The spatial distribution of these biogeochemical reactions is affected by processes that are often unique and/or characteristic to a specific environment. Generic model formulations have been developed and applied to simulate the fate and transport of arsenic in two hydrologic settings, permanently flooded freshwater sediments, namely non-vegetated wetland sediments and vegetated wetland sediments. The key physical processes that have been considered are sedimentation, effects of roots on biogeochemistry, advective transport, and differences in mixing processes. Steady-state formulations were applied to the sedimentary environments. Results of numerical simulations show that these physical processes significantly affect the chemical profiles of different electron acceptors, their reduced species, and arsenate as well as arsenite that will result from the degradation of an organic carbon source in the sediments. Even though specific biological transformations are allowed to proceed only in zones where they are thermodynamically favorable, the results show that mixing as well as abiotic reactions can make the profiles of individual electron acceptors overlap and/or appear to reverse their expected order.

Physiological Response of Young Seedlings from Five Accessions of Diospyros L. under Salinity Stress

  • Wei, Ping;Yang, Yong;Fang, Ming;Wang, Fei;Chen, Hejie
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.564-577
    • /
    • 2016
  • Salinity stress limits plant cultivation in many areas worldwide; however, persimmon (Diospyros spp.) has high tolerance to salt. Five accessions of Diospyros [three of Diospyros lotus (accession numbers 824, 846, and 847); one of Diospyros kaki var. sylvestris (869); and one of Diospyros virginiana (844)] were chosen for analysis of salinity stress. We compared the effects of salt stress on plant growth, relative water content (RWC), malondialdehyde (MDA), electrolyte leakage (EL), hydrogen peroxide content ($H_2O_2$), and antioxidative enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD; and ascorbate peroxidase, APX) in leaves of healthy potted seedlings from each of the five accessions after salt treatment for 25 days. Salt stress affected the growth of plants in all five accessions, with all three D. lotus accessions showing the most severe effect. Salt stress increased membrane lipid peroxidation in all accessions, but a stronger increase was observed in the three D. lotus accessions. Moreover, accumulation of $H_2O_2$ was faster in salt-sensitive D. lotus compared to salt-tolerant D. virginiana 844. The activities of all antioxidant enzymes increased in D. virginiana 844 and in D. kaki var. sylvestris 869; the activities of SOD, CAT, and APX were at similar levels in D. virginiana 844 and D. kaki var. sylvestris 869, but POD activity was stimulated to a greater extent in D. virginiana 844. The activities of all antioxidant enzymes (except POD) decreased in D. lotus 824 and increased (except for SOD) in D.lotus 846. The activities of SOD and APX decreased in D. lotus 847, whereas POD and CAT activities both increased. Relative water content decreased significantly in D. lotus. No significant changes in lipid peroxidation or relevant antioxidant parameters were detected in any of the accessions in controls treated with 0.0% NaCl. D. virginiana 844 had higher antioxidant capacity in response to salinity compared to other persimmon rootstocks. These results indicate that changes of these key physiological variables are related to salinity resistance in different accessions of persimmon.

Viability of eggs, filariform larvae and adults of Stronglyloides venezuelensis (Nematoda: Strongyloidea) maintained in vitro (베네수엘라분선충 (Strongvloides venezuelensis)의 충란, 감염자충 및 성충의 실험관 내 배양)

  • ;M.
    • Parasites, Hosts and Diseases
    • /
    • v.36 no.2
    • /
    • pp.99-108
    • /
    • 1998
  • The present study was performed to check the viability of eggs, filariform larvae and adults of Strongvloines venezueLensis exposed to various conditions for an in vitro maintenance. The eggs in the feces remained viable for about 25 days at $4^{\circ}C$ and 15 days at room temperature. However, the isolated eggs in sterile saline lost their viability within 24 hr at $4^{\circ}C$. The eggs in morula stage were very sensitive to air drying and rapidly lost their viability (=12 hrs. Filariform larvae survived for a maximum period of 45 days in fecal suspension and 28 days in 0.12% nutrient broth in polyvinyl culture bags maintained at $20^{\circ}C$. On the other hand, those isolated from nutrient broth cultures survived for a maximum period of 32 days in tap water and 22 days in sterile saline at $20^{\circ}C$. The mature adult worms obtained from experimentally infected rats survived maximally for 9 days in serum supplemented (10% rat-serum) 0.12% nutrient broth and 4 days in serum free nutrient broth at $37^{\circ}C$ while the culture media were changed at an alternate day. The adult female worms deposited fertile eggs in serum supplemented and serum free nutrient broth cultures, however, the hatched larvae (Ll) were not able to develop to the filariform stage in the culture media and found to die within 24 hr of maintenance. The present findings on an in vitro maintenance of different stages of 5. uenezueLetis may provide useful information for biological and biochemical studies with Strongyloines species. Key words: Strongvloides venezuelensis. viability in vitro maintenance, free-living filariform larvae (L3), embryonation of eggs

  • PDF

Capability of CO2 on Metal-Organic Frameworks-Based Porous Adsorbents and Their Challenges to Pressure Swing Adsorption Applications (금속-유기 골격계 다공성 흡착제의 이산화탄소 흡착성능과 압력순환흡착 공정 적용의 문제점)

  • Kim, Moon Hyeon;Choi, Sang Ok;Choo, Soo Tae
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.370-378
    • /
    • 2013
  • This review has shown the capability of MOFs and ZIFs materials to adsorb $CO_2$ under typical PSA temperatures and pressures. The usual operating conditions are adsorption temperatures of $15{\sim}40^{\circ}C$ and adsorption pressures of 4~6 bar based on numerous PSA processes which are widely employed in gases industry for adsorptive separation of $CO_2$. The extent of $CO_2$ adsorption on the microporous materials depends on the metal species and organic linkers existing in the frameworks. The pore size and the surface area, and the process variables are the key parameters to be associated with the efficiency of the adsorbents, particularly adsorption pressures if other variables are comparable each other. The MOFs and ZIFs materials require high pressures greater than 15 bar to yield significant $CO_2$ uptakes. They possess a $CO_2$ adsorption capacity which is very similar to or less than that of conventional benchmark adsorbents such as zeolites and activated carbons. Consequently, those materials have been much less cost-effective for adsorptive $CO_2$ separation to date because of very high production price and the absence of commercially-proven PSA processes using such new adsorbents.