Browse > Article
http://dx.doi.org/10.5352/JLS.2009.19.3.343

Identification and Molecular Characterization of Methionine Sulfoxide Reductase B Gene in Rice Blast Fungus, Magnaporthe oryzae  

Kim, Jeong-Hwan (Department of Biomaterial Control, Dongeui University)
Kim, Jin-Soo (Department of Biomaterial Control, Dongeui University)
Jeong, Mi-Yeon (Department of Biotechnology and Bioengineering, Dongeui University)
Choi, Woo-Bong (Department of Biomaterial Control, Dongeui University)
Publication Information
Journal of Life Science / v.19, no.3, 2009 , pp. 343-348 More about this Journal
Abstract
Magnaporthe oryzae, a major cause of rice blast, is one of the most destructive plant fungal pathogens. Secretion of reactive oxygen species (ROS) during the infection phase of plant pathogenic fungus plays a key role in the defense mechanism of a plant. ROS causes oxidative damage and functional modification to the proteins in a pathogenic fungus. Methionine, especially, is a major target of ROS, which oxidizes it to methionine sulfoxide. To survive from the attack of ROS, plant pathogenic fungus has antioxidative systems - one example would be methionine sulfoxide reductase B (MSRB), which reverses the oxidative alteration of methionine to methionine sulfoxide. In the present study, identification and molecular characterization of the MSRB gene in M. oryzae KJ201 were investigated. The MSRB gene was amplified by PCR from the M. oryzae KJ201 genomic DNA. The copy number of MSRB in the genome of M. oryzae KJ201 was identified by Southern blot analysis, which revealed that the gene exists as a single copy. To study the molecular function of an MSRB gene, the expression level of the MSRB gene was assayed with hydrogen peroxide treatment by Northern blot analysis and RT-PCR. The expression of the MSRB gene was increased by treatment of hydrogen peroxide, without significant correlation to hydrogen peroxide concentrations. These results indicate that the MSRB gene in M. oryzae KJ201 could contribute to protection against plant defense compounds such as ROS and offer a novel strategy for the control of rice blast.
Keywords
Magnaporthe oryzae; methionine sulfoxide reductase B; hydorogen peroxide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ou, S. H. 1985. Rice disease. Commonwealth Agricultural Bureaux, Wallingford, England. 135, 1011-1019
2 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A laboratory manual. 2nd eds., Cold Spring Harbor Press. New York
3 Skaar, E. P., D. M. Tobiason, J. Quick, R. C. Judd, H. Weissbach, F. Etienne, N. Brot, and H. S. Seifert. 2002. The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species. Proc. Natl. Acad. Sci. U. S. A. 99, 10108-10113   DOI   ScienceOn
4 Talbot, N. and A. Foster. 2001. Genetics and genomics of the rice blast fungus Magnaporthe grisea: developing an experimental model for understanding fungal diseases of cereals. Adv. Bot. Res. 34, 263-287   DOI
5 Talbot, N. J., Y. P. Salch, M. Ma, and J. E. Hamer. 1993. Karyotypic cariation within clonal lineages of the rice blast fungus, Magnaporthe grisea. Appl. Environ. Microbiol. 59, 585-593
6 Valent, B. 1990. Rice blast as a model system for plant pathology. Phytopathology 80, 33-36   DOI
7 Vougier, S., J. Mary, N. Dautin, J. Vinh, B. Friguet, and D. Ladant. 2004. Essential role of methionine residues in calmodulin binding to Bordetella pertussis adenylate cyclase, as probed by selective oxidation and repair by the peptide methionine sulfoxide reductases. J. Biol. Chem. 279, 30210-30218   DOI   ScienceOn
8 Zeigler, R. S., S. A. Leong, and P. S. Teeng. 1994. Rice Blast Disease. CAB International, Wallingford
9 Ford, T. L., J. T. Cooley, and P. Christou. 1994. Current status for gene transfer into rice utilizing variety-independent delivery systems. CAB International. Ziegler, R. S., S. A. Leong, and P. S. Teng, UK
10 Jackob, M. 2005. Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. Biochim. Biophys. Acta. 1703, 213-219   DOI
11 Jeon, J., S. Y. Park, M. H. Chi, J. Choi, J. Park, H. S. Rho, S. Kim, J. Goh, S. Yoog, J. Choi, J. Y. Park, M. Yi, S. Yang, M. J. Kwon, S. S. Han, B. R. Kim, C. H. Khang, B. Park, S. E. Lim, K. Jung, S. Kong, M. Karunakaran, H. S. Oh, H. Kim, S. Kim, J. Park, S. Kang, W. B. Choi, S. Kang, and Y. H. Lee. 2007. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat. Genet. 39, 561-565   DOI   ScienceOn
12 Jones, D. A. and D. Takemoto. 2004. Plant innate immunity- direct and indirect recognition of general and specific pathogen-associated molecules. Curr. Opin. Immunol. 16, 48-62   DOI   ScienceOn
13 Kauffmann, B., A. Aubry, and F. Favier. 2005. The three-dimensional structures of peptide methionine sulfoxide reductases: current knowledge and open questions. Biochim. Biophys. Acta. 1703, 249-260   DOI   ScienceOn
14 Moskovitz, J., V. K. Singh, J. Requena, B. J. Wilkinson, R. K. Jayaswal, and E. R. Stadtman. 2002. Purification and characterization of methionine sulfoxide reductases from mouse and Staphylococcus aureus and their substrate stereospecificity. Biochem. Biophys. Res. Commun. 290, 62-65   DOI   ScienceOn
15 Murray, M. G. and W. F. Thomson. 1980. Rapid isolation of high molecular weight plant DNA. Necleic Acids Research 8, 4321-4325   DOI   ScienceOn
16 Nimchuk, Z., T. Eulgem, B. F. Holt, and J. L. Dangl. 2003. Recognition and response in the plant immune system. Annu. Rev. Genet. 37, 579-609   DOI   ScienceOn
17 Dean, R. A., N. J. Talbot, D. J. Ebbole, M. L. Farman, T. K. Mitchell, M. J. Orbach, M. Thon, R. Kulkarni, J. R. Xu, H. Pan, N. D. Read, Y. H. Lee, I. Carbone, D. Brown, Y. Y. Oh, N. Donofrio, J. S. Jeong, D. M. Soanes, S. Djonovic, E. Kolomiets, C. Rehmeyer, W. Li, M. Harding, S. Kim, M. H. Lebrun, H. Bohnert, S. Coughlan, J. Butler, S. Calvo, L. J. Ma, R. Nicol, S. Purcell, C. Nusbaum, J. E. Galagan, and B. W. Birren. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980-986   DOI   ScienceOn
18 Bar-Noy, S. and J. Moskovitz. 2002. Mouse methionine sulfoxide reductase B: effect of selenocysteine incorporation on its activity and expression of the seleno-containing enzyme in bacterial and mammalian cells. Biochem. Biophys. Res. Commun. 297, 956-961   DOI   ScienceOn
19 Boschi-Muller, S., A. Olry, M. Antoine, and G. Branlant. 2005. The enzymology and biochemistry of methionine sulfoxide reductases. Biochim. Biophys. Acta. 1703, 231-238   DOI   ScienceOn
20 Couch, B. C. and L. M. Kohn. 2002. A multilocus gene genealogy concordant with host preference indicates segregation of new species, Magnaporthe oryzae from M. grisea. Mycologia 94, 683-693   DOI   ScienceOn
21 Etienne, F., D. Spector, N. Brot, and H. Weissbach. 2003. A methionine sulfoxide reductase in Escherichia coli that reduces the R enantiomer of methionine sulfoxide. Biochem. Biophys. Res. Commun. 300, 378-382   DOI   ScienceOn
22 Ezraty, B., L. Aussel, and F. Barras. 2005. Methionine sulfoxide reductases in prokaryotes. Biochim. Biophys. Acta. 1703, 221-229   DOI   ScienceOn