• Title/Summary/Keyword: key management scheme

Search Result 382, Processing Time 0.023 seconds

A Security Analysis of a Key Management Scheme for PCS/SCADA Sensor Networks (PCS/SCADA 센서 네트워크용 키 관리 프로토콜에 대한 보안 분석)

  • Park, DongGook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.2
    • /
    • pp.123-131
    • /
    • 2009
  • Process Control Systems (PCSs) or Supervisory Control and Data Acquisition (SCADA) systems have recently been added to the already wide collection of wireless sensor networks applications. The PCS/SCADA environment is somewhat more amenable to the use of heavy cryptographic mechanisms such as public key cryptography than other sensor application environments. The sensor nodes in the environment, however, are still open to devastating attacks such as node capture, which makes designing a secure key management challenging. Recently, Nilsson et al. proposed a key management scheme for PCS/SCADA, which was claimed to provide forward and backward secrecies. In this paper, we define four different types of adversaries or attackers in wireless sensor network environments in order to facilitate the evaluation of protocol strength. We then analyze Nilsson et al. 's protocol and show that it does not provide forward and backward secrecies against any type of adversary model.

An Identity-Based Key-Insulated Encryption with Message Linkages for Peer-to-Peer Communication Network

  • Hsu, Chien-Lung;Lin, Han-Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2928-2940
    • /
    • 2013
  • Key exposure is a major threat to secure cryptosystems. To mitigate the impact caused by key-compromise attacks, a key-insulated cryptographic mechanism is a better alternative. For securing the large message communication in peer-to-peer networks, in this paper, we propose the first novel identity-based key-insulated encryption (IB-KIE) scheme with message linkages. Our scheme has the properties of unbounded time periods and random-access key-updates. In the proposed scheme, each client can periodically update his private key while the corresponding public one remains unchanged. The essential security assumption of our proposed scheme is based on the well-known bilinear Diffie-Hellman problem (BDHP). To ensure the practical feasibility, we also formally prove that the proposed scheme achieves the security requirement of confidentiality against indistinguishability under adaptive chosen-ciphertext attacks (IND-CCA2) in the random oracle model.

Practical Attacks on Hybrid Group Key Management for SOHAN

  • Liew, Jiun-Hau;Ong, Ivy;Lee, Sang-Gon;Lim, Hyo-Taek;Lee, Hoon-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.549-553
    • /
    • 2010
  • Lim et al. proposed a Hybrid Group Key Management scheme for Hierarchical Self-Organizing Sensor Network in 2008 to provide a secure way to pass down the group key for cluster-based communication. This paper presents two practical attacks on the scheme proposed by Lim et al. by tampering sensor nodes of a cluster to recover necessary secret keys and by exploiting the IDS employed by the scheme. The first attack enables a long-term but slow data fabrication while other attack causes more severe DoS on the access to cluster sensor nodes.

A Study of Location-based Key Management Using a Grid for Wireless Sensor Networks (무선 센서 네트워크에서 그리드 정보를 활용한 위치 기반 키 관리 연구)

  • Choi, Jaewoo;Kim, Yonghyun;Kim, JuYoub;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.4
    • /
    • pp.759-766
    • /
    • 2015
  • This paper proposes a location-based key management scheme in wireless sensor networks, and among the existing location-based key management techniques, we focused on the LDK (Location Dependent Key management). In order to improve the problems occurred by communication interference, we introduced the key revision process and the method of key establishment using grid information. According to the simulation of this scheme, it increased connectivity while decreased compromise ratio than those of the previous LDK, futhermore, we confirmed that a hexagon distribution of AN reduces the network cost.

A Key Management Scheme for Commodity Sensor Networks (소모형 센서 네트워크 환경에 적합한 키 관리 스킴)

  • Kim Young-Ho;Lee Hwa-Seong;Lee Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.2
    • /
    • pp.71-80
    • /
    • 2006
  • To guarantee secure communication in wireless sensor networks, secret keys should be securely established between sensor nodes. Recently, a simple key distribution scheme has been proposed for pair-wise key establishment in sensor networks by Anderson, Chan, and Perrig. They defined a practical attack model for non-critical commodity sensor networks. Unfortunately, the scheme is vulnerable under their attack model. In this paper, we describe the vulnerability in their scheme and propose a modified one. Our scheme is secure under their attack model and the security of our scheme is proved. Furthermore, our scheme does not require additional communication overhead nor additional infrastructure to load potential keys into sensor nodes.

Group Key Management Scheme for Survelliance and Reconnaissance Sensor Networks based on Probabilistic Key Sharing (확률론적 키 공유를 통한 감시정찰 센서네트워크에서의 그룹 키 관리 기법)

  • Bae, Si-Hyun;Lee, Soo-Jin
    • Convergence Security Journal
    • /
    • v.10 no.3
    • /
    • pp.29-41
    • /
    • 2010
  • Survelliance and Reconnaissance Sensor Network(SRSN) which can collect various tactical information within battlefield in real time plays an important role in NCW environment, of sensor to shooter architecture. However, due to the resource-limited characteristics of sensor nodes and the intrinsic attributes of sensor network such as wireless communication, the SRSN may be vulnerable to various attacks compared to traditional networks. Therefore, in this paper, we propose a new group key management scheme to guarantee confidentiality, integrity, availability, and authentication during the operation of the SRSN. Proposed scheme generates and distributes the group key based on the topological characteristic of the SRSN and the probabilistic key sharing. The communication cost for distributing the group key is O(logn).

A Group Key Management Scheme for WSN Based on Lagrange Interpolation Polynomial Characteristic

  • Wang, Xiaogang;Shi, Weiren;Liu, Dan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3690-3713
    • /
    • 2019
  • According to the main group key management schemes logical key hierarchy (LKH), exclusion basis systems (EBS) and other group key schemes are limited in network structure, collusion attack, high energy consumption, and the single point of failure, this paper presents a group key management scheme for wireless sensor networks based on Lagrange interpolation polynomial characteristic (AGKMS). That Chinese remainder theorem is turned into a Lagrange interpolation polynomial based on the function property of Chinese remainder theorem firstly. And then the base station (BS) generates a Lagrange interpolation polynomial function f(x) and turns it to be a mix-function f(x)' based on the key information m(i) of node i. In the end, node i can obtain the group key K by receiving the message f(m(i))' from the cluster head node j. The analysis results of safety performance show that AGKMS has good network security, key independence, anti-capture, low storage cost, low computation cost, and good scalability.

A Secure Key Predistribution Scheme for WSN Using Elliptic Curve Cryptography

  • Rajendiran, Kishore;Sankararajan, Radha;Palaniappan, Ramasamy
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.791-801
    • /
    • 2011
  • Security in wireless sensor networks (WSNs) is an upcoming research field which is quite different from traditional network security mechanisms. Many applications are dependent on the secure operation of a WSN, and have serious effects if the network is disrupted. Therefore, it is necessary to protect communication between sensor nodes. Key management plays an essential role in achieving security in WSNs. To achieve security, various key predistribution schemes have been proposed in the literature. A secure key management technique in WSN is a real challenging task. In this paper, a novel approach to the above problem by making use of elliptic curve cryptography (ECC) is presented. In the proposed scheme, a seed key, which is a distinct point in an elliptic curve, is assigned to each sensor node prior to its deployment. The private key ring for each sensor node is generated using the point doubling mathematical operation over the seed key. When two nodes share a common private key, then a link is established between these two nodes. By suitably choosing the value of the prime field and key ring size, the probability of two nodes sharing the same private key could be increased. The performance is evaluated in terms of connectivity and resilience against node capture. The results show that the performance is better for the proposed scheme with ECC compared to the other basic schemes.

Efficient Batch Rekeying Scheme using Random Number (난수를 사용한 효율적인 일괄 rekeying 기법)

  • Chung, Joung-In
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.9
    • /
    • pp.891-902
    • /
    • 2004
  • Membership changing is deeply associated with scalability problem for group key management. If members of the group join or leave, new group key has to be geneerated and distributed to all remaining members of group. Group key changing is perform for group controller. The following parameters are important evaluating criteria of multicast key management scheme that generate and deliver new keys for rekeying: the number of keys stored by both controller and member, messages to deliver, keys to initially be delivered by controller, blocking capability of collusion attacks, messages to deliver at the batch rekeyng. Batch rekeying can reduce messages to deliver and operation costs of generation for message rather than removing members sequentially in fashion one after another. We propose efficient batch rekeying scheme applicable to Pegueroles scheme using random number and prove to be a efficient group key scheme for enhanced Pegueroles model with batch rekeying capability.

  • PDF

Design and Estimation of a Session Key based Access Control Scheme for Secure Communications in IoT Environments (IoT 환경에서 안전한 통신을 위한 세션 키 기반 접근 제어 기법의 설계 및 평가)

  • Jin, Byungwook;Jung, Dongwoog;Cha, Siho;Jun, Moonseog
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 2016
  • Internet of Things (IoT) services are widely used in appliances of daily life and industries. IoT services also provide various conveniences to users and are expected to affect value added of all industries and national competitiveness. However, a variety of security threats are increased in IoT environments and lowers reliability of IoT devices and services that make some obstacles for commercialization. The attacks arising in IoT environments are making industrial and normal life accidents unlike existing information leak and monetary damages, and can expand damage scale of leakage of personal information and privacy more than existing them. To solve these problems, we design a session key based access control scheme for secure communications in IoT environments. The proposed scheme reinforces message security by generating session key between device and access control network system. We analyzed the stability of the proposed access scheme in terms of data forgery and corruption, unauthorized access, information disclosure, privacy violations, and denial of service attacks. And we also evaluated the proposed scheme in terms of permission settings, privacy indemnity, data confidentiality and integrity, authentication, and access control.