• 제목/요약/키워드: key joint

검색결과 562건 처리시간 0.023초

중관촌(中關村) 클러스터 연구개발 네트워크의 특성 (The characteristics of R&D Network in Zhongguancun Cluster)

  • 첨군;이철우
    • 한국경제지리학회지
    • /
    • 제15권4호
    • /
    • pp.550-569
    • /
    • 2012
  • 본 연구에서는 중국 베이징시(북경시(北京市)) 중관촌(中關村) 클러스터를 사례로 첨단산업 연구개발 네트워크의 특성을 기업간, 산 학, 산 연, 산 관에 초점을 두고 고찰하였다. 분석결과는 다음과 같다. 중관촌(中關村) 클러스터 기업의 국제경쟁력을 제고시키기 위해서는 연구개발의 강화가 요구된다. 기업의 연구개발 네트워크 실태를 조사한 결과를 살펴보면, 조사 대상 기업들은 현재에도 어느 정도는 연구개발 네트워크가 활성화되고 있다. 특히 기업의 협력 대상별 연구개발 네트워크의 내용에 있어서 차이는 있으나, 기업들은 다양한 내용으로 연구개발 네트워크를 이용하고 있다. 그러나 연구개발 네트워크가 어느 정도 자리잡은 수준에 이르고 있지만 아직까지 기업들이 연구개발 네트워크를 구축하는데 많은 애로가 있는 것이 사실이다. 따라서 본문은 기업들이 연구개발 네트워크를 형성하는데 애로점을 해결하기 위해 개선방안을 제시하였다.

  • PDF

A NOVEL APPROACH TO COMPACTLY BRAZE ALUMINUM ALLOYS

  • Qian, Yiyu;Dong, Zhangui;Liu, Jun
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.545-550
    • /
    • 2002
  • In order to ensure the signal could be transported cocrrectly, the microwave devices made of Aluminmn alloys must be assembled and brazed flaw-freely. In this paper, a new approach of using contact reactive brazing (CRB) process to realize the compact brazing of Aluminum alloys was put forward. The reason for this is that CRB, which realizes bonding depending on the liquid alloy produced by metallurgy reaction between the materials to be joined, overcomes the limitation of traditional brazing that the macroscopically disorganized filling flow of liquid filler metal would result in defects in brazed seam. Joint ofLF21 (AA3003) with the compactness of over 95% was brazed by the method of CRB using Si powder as an interlayer. At last, the influence of the physical parameter related to the Si powder interlayer on the compactness of the joints was investigated in detail.

  • PDF

Nonlinear simulation of tunnel linings with a simplified numerical modelling

  • Zhao, Huiling;Liu, Xian;Bao, Yihai;Yuan, Yong
    • Structural Engineering and Mechanics
    • /
    • 제61권5호
    • /
    • pp.593-603
    • /
    • 2017
  • A high-efficiency simplified modelling approach is proposed for investigating the nonlinear responses of reinforced concrete linings of shield tunnels. Material and geometric nonlinearities are considered in the analysis of the lining structures undergoing large deformation before ultimately losing the load-carrying capacity. A beam-spring element model is developed to capture the force-transfer mechanism between lining segments and radial joints. The developed model is validated by comparing analyzed results to experimental results of a single-ring lining structure under two loading conditions: the ground overloading and the lateral unloading respectively. The results show that the lining structure under the lateral unloading due to excavation on the both sides of the tunnel is more vulnerable compared to the case of ground overloading on the top of the tunnel. A parameter study is conducted and results indicate that the lateral pressure coefficient has the greatest influence on the behaviour of the lining structure.

Multiple-Phase Energy Detection and Effective Capacity Based Resource Allocation Against Primary User Emulation Attacks in Cognitive Radio Networks

  • Liu, Zongyi;Zhang, Guomei;Meng, Wei;Ma, Xiaohui;Li, Guobing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권3호
    • /
    • pp.1313-1336
    • /
    • 2020
  • Cognitive radio (CR) is regarded as an effective approach to avoid the inefficient use of spectrum. However, CRNs have more special security problems compared with the traditional wireless communication systems due to its open and dynamic characteristics. Primary user emulation attack (PUEA) is a common method which can hinder secondary users (SUs) from accessing the spectrum by transmitting signals who has the similar characteristics of the primary users' (PUs) signals, and then the SUs' quality of service (QoS) cannot be guaranteed. To handle this issue, we first design a multiple-phase energy detection scheme based on the cooperation of multiple SUs to detect the PUEA more precisely. Second, a joint SUs scheduling and power allocation scheme is proposed to maximize the weighted effective capacity of multiple SUs with a constraint of the average interference to the PU. The simulation results show that the proposed method can effectively improve the effective capacity of the secondary users compared with the traditional overlay scheme which cannot be aware of the existence of PUEA. Also the good delay QoS guarantee for the secondary users is provided.

Assessment of the directional extreme wind speeds of typhoons via the Copula function and Monte Carlo simulation

  • Wang, Jingcheng;Quan, Yong;Gu, Ming
    • Wind and Structures
    • /
    • 제30권2호
    • /
    • pp.141-153
    • /
    • 2020
  • Probabilistic information regarding directional extreme wind speeds is important for the precise estimation of the design wind loads on structures. A joint probability distribution model of directional extreme typhoon wind speeds is established using Monte Carlo simulation and empirical copula function to fully consider the correlations of extreme typhoon wind speeds among the different directions. With this model, a procedure for estimating directional extreme wind speeds for given return periods, which ensures that the overall risk is distributed uniformly by direction, is established. Taking 5 typhoon-prone cities in China as examples, the directional extreme typhoon wind speeds for given return periods estimated by the present method are compared with those estimated by the method proposed by Cook and Miller (1999). Two types of directional factors are obtained based on Cook and Miller (1999) and the UK standard's drafting committee (Standard B, 1997), and the directional risks for the given overall risks are discussed. The influences of the extreme wind speed correlations in the different directions and the simulated typhoon wind speed sample sizes on the estimated extreme wind speeds for a given return period are also discussed.

Coalition Formation Game Based Relay Selection and Frequency Sharing for Cooperative Relay Assisted Wireless D2D Networks with QoS Constraints

  • Niu, Jinxin;Tang, Wei;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권11호
    • /
    • pp.5253-5270
    • /
    • 2016
  • With device-to-device (D2D) communications, an inactive user terminal can be utilized as a relay node to support multi-hop communication so that connective experience of the cell-edge user as well as the capacity of the whole system can be significantly improved. In this paper, we investigate the spectrum sharing for a cooperative relay assisted D2D communication underlying a cellular network. We formulate a joint relay selection and channel assignment problem to maximize the throughput of the system while guaranteeing the quality of service (QoS) requirements of cellular users (CUs) and D2D users (DUs). By exploiting coalition formation game theory, we propose two algorithms to solve the problem. The first algorithm is designed based on merge and split rules while the second one is developed based on single user's movement. Both of them are proved to be stable and convergent. Simulation results are presented to show the effectiveness of the proposed algorithms.

Resource Allocation in Multi-User MIMO-OFDM Systems with Double-objective Optimization

  • Chen, Yuqing;Li, Xiaoyan;Sun, Xixia;Su, Pan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.2063-2081
    • /
    • 2018
  • A resource allocation algorithm is proposed in this paper to simultaneously minimize the total system power consumption and maximize the system throughput for the downlink of multi-user multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems. With the Lagrange dual decomposition method, we transform the original problem to its convex dual problem and prove that the duality gap between the two problems is zero, which means the optimal solution of the original problem can be obtained by solving its dual problem. Then, we use convex optimization method to solve the dual problem and utilize bisection method to obtain the optimal dual variable. The numerical results show that the proposed algorithm is superior to traditional single-objective optimization method in both the system throughput and the system energy consumption.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (I): Experimental study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.399-408
    • /
    • 2017
  • This paper experimentally studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Four beam-to-wall connection specimens with short and long embedded steel columns are tested under monotonic and cyclic loads, respectively. The influence of embedment length of columns on the failure mode and performance of connections is investigated. The results show that the length of embedded steel columns has significant effect on the failure mode of connections. A connection with a long embedded column has a better stiffness, load-bearing capacity and ductility than that of a short embedded column. The former fails due to the shear yielding of column web in the joint panel, while failure of the latter is initiated by the yielding of horizontal reinforcement in the wall due to the rigid rotation of the column. It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility.

Seismic fragility assessment of self-centering RC frame structures considering maximum and residual deformations

  • Li, Lu-Xi;Li, Hong-Nan;Li, Chao
    • Structural Engineering and Mechanics
    • /
    • 제68권6호
    • /
    • pp.677-689
    • /
    • 2018
  • Residual deformation is a crucial index that should be paid special attention in the performance-based seismic analyses of reinforced concrete (RC) structures. Owing to their superior re-centering capacity under earthquake excitations, the post-tensioned self-centering (PTSC) RC frames have been proposed and developed for engineering application during the past few decades. This paper presents a comprehensive assessment on the seismic fragility of a PTSC frame by simultaneously considering maximum and residual deformations. Bivariate limit states are defined according to the pushover analyses for maximum deformations and empirical judgments for residual deformations. Incremental Dynamic Analyses (IDA) are conducted to derive the probability of exceeding predefined limit states at specific ground motion intensities. Seismic performance of the PTSC frame is compared with that of a conventional monolithic RC frame. The results show that, taking a synthetical consideration of maximum and residual deformations, the PTSC frame surpasses the monolithic frame in resisting most damage states, but is more vulnerable to ground motions with large intensities.

Deep Local Multi-level Feature Aggregation Based High-speed Train Image Matching

  • Li, Jun;Li, Xiang;Wei, Yifei;Wang, Xiaojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권5호
    • /
    • pp.1597-1610
    • /
    • 2022
  • At present, the main method of high-speed train chassis detection is using computer vision technology to extract keypoints from two related chassis images firstly, then matching these keypoints to find the pixel-level correspondence between these two images, finally, detection and other steps are performed. The quality and accuracy of image matching are very important for subsequent defect detection. Current traditional matching methods are difficult to meet the actual requirements for the generalization of complex scenes such as weather, illumination, and seasonal changes. Therefore, it is of great significance to study the high-speed train image matching method based on deep learning. This paper establishes a high-speed train chassis image matching dataset, including random perspective changes and optical distortion, to simulate the changes in the actual working environment of the high-speed rail system as much as possible. This work designs a convolutional neural network to intensively extract keypoints, so as to alleviate the problems of current methods. With multi-level features, on the one hand, the network restores low-level details, thereby improving the localization accuracy of keypoints, on the other hand, the network can generate robust keypoint descriptors. Detailed experiments show the huge improvement of the proposed network over traditional methods.