• Title/Summary/Keyword: kernel regression

Search Result 240, Processing Time 0.024 seconds

Varietal Characteristics of Kernel Growth of Rice influenced by Different Temperature Regimes During Grain Filling

  • Kim, Deog-Su;Shin, Jin-Chul;Park, Kyung-Jin;Lee, Chung-Kuen;Kim, Je-Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.5
    • /
    • pp.397-401
    • /
    • 2003
  • This experiment was conducted to know the characteristics of kernel growth as affected by various temperature regimes during grain filling using the varieties Hwaseongbyeo, Ilpumbyeo and Chucheongbyeo. The rice plants tested were grown in the natural condition at 1/5000a Wagner pots until flowering. After flowering, the rice plants were moved to controlled temperature conditions in a phytotron. The minimum/maximum daily temperature in the phytotron was controlled by 12/18, 15/21, 18/24, 21/27, and 24/$30^{\circ}C$, respectively. The grain weights were measured every three days after treatment. The mean daily kernel growth rate during active grain filling period showed different responses among varieties under various temperature regimes. The kernel growth rate of Chucheongbyeo was seriously reduced as temperature regimes were decreased. However, that of Ilpumbyeo was not influenced so critically. Ilpumbyeo showed some advantages in grain filling under low temperature regimes compared to Chucheongbyeo. The lag phase in grain filling of Chucheongbyeo was the longest among tested varieties, followed by Hwaseongbyeo under daily mean temperature regime of $15^{\circ}C$. Kernel weight of Ilpumbyeo increased fast in early grain filling phase under low temperature. This characteristic may be favorable for grain filling in temperate zone where the daily mean temperature is drastically dropped during grain filling period. Regression analysis with kernel growth rate and temperature showed the estimated critical low temperature for grain filling among varieties were $9^{\circ}C$, $12^{\circ}C$, $13^{\circ}C$ in Ilpumbyeo, Hwaseongbyeo and Chucheongbyeo, respectively. Under moderate temperature the duration of grain filling of Ilpumbyeo was longer than that of Chucheongbyeo. However, Under low temperature that of Ilpumbyeo was more favorable than Chucheongbyeo.

Fused sliced inverse regression in survival analysis

  • Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.533-541
    • /
    • 2017
  • Sufficient dimension reduction (SDR) replaces original p-dimensional predictors to a lower-dimensional linearly transformed predictor. The sliced inverse regression (SIR) has the longest and most popular history of SDR methodologies. The critical weakness of SIR is its known sensitive to the numbers of slices. Recently, a fused sliced inverse regression is developed to overcome this deficit, which combines SIR kernel matrices constructed from various choices of the number of slices. In this paper, the fused sliced inverse regression and SIR are compared to show that the former has a practical advantage in survival regression over the latter. Numerical studies confirm this and real data example is presented.

NONPARAMETRIC ESTIMATION OF THE VARIANCE FUNCTION WITH A CHANGE POINT

  • Kang Kee-Hoon;Huh Jib
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.1
    • /
    • pp.1-23
    • /
    • 2006
  • In this paper we consider an estimation of the discontinuous variance function in nonparametric heteroscedastic random design regression model. We first propose estimators of the change point in the variance function and then construct an estimator of the entire variance function. We examine the rates of convergence of these estimators and give results for their asymptotics. Numerical work reveals that using the proposed change point analysis in the variance function estimation is quite effective.

e-SVR using IRWLS Procedure

  • Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1087-1094
    • /
    • 2005
  • e-insensitive support vector regression(e-SVR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. In this paper we propose an iterative reweighted least squares(IRWLS) procedure to solve the quadratic problem of e-SVR with a modified loss function. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of e-SVR. Experimental results are then presented which illustrate the performance of the IRWLS procedure for e-SVR.

  • PDF

Mixed-effects LS-SVR for longitudinal dat

  • Cho, Dae-Hyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.363-369
    • /
    • 2010
  • In this paper we propose a mixed-effects least squares support vector regression (LS-SVR) for longitudinal data. We add a random-effect term in the optimization function of LS-SVR to take random effects into LS-SVR for analyzing longitudinal data. We also present the model selection method that employs generalized cross validation function for choosing the hyper-parameters which affect the performance of the mixed-effects LS-SVR. A simulated example is provided to indicate the usefulness of mixed-effect method for analyzing longitudinal data.

Comparison of Jump-Preserving Smoothing and Smoothing Based on Jump Detector

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.519-528
    • /
    • 2009
  • This paper deals with nonparametric estimation of discontinuous regression curve. Quite number of researches about this topic have been done. These researches are classified into two categories, the indirect approach and direct approach. The major goal of the indirect approach is to obtain good estimates of jump locations, whereas the major goal of the direct approach is to obtain overall good estimate of the regression curve. Thus it seems that two approaches are quite different in nature, so people say that the comparison of two approaches does not make much sense. Therefore, a thorough comparison of them is lacking. However, even though the main issue of the indirect approach is the estimation of jump locations, it is too obvious that we have an estimate of regression curve as the subsidiary result. The point is whether the subsidiary result of the indirect approach is as good as the main result of the direct approach. The performance of two approaches is compared through a simulation study and it turns out that the indirect approach is a very competitive tool for estimating discontinuous regression curve itself.

On Convex Combination of Local Constant Regression

  • Mun, Jung-Won;Kim, Choong-Rak
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.379-387
    • /
    • 2006
  • Local polynomial regression is widely used because of good properties such as such as the adaptation to various types of designs, the absence of boundary effects and minimax efficiency Choi and Hall (1998) proposed an estimator of regression function using a convex combination idea. They showed that a convex combination of three local linear estimators produces an estimator which has the same order of bias as a local cubic smoother. In this paper we suggest another estimator of regression function based on a convex combination of five local constant estimates. It turned out that this estimator has the same order of bias as a local cubic smoother.

Gaussian Process Regression and Its Application to Mathematical Finance (가우시언 과정의 회귀분석과 금융수학의 응용)

  • Lim, Hyuncheul
    • Journal for History of Mathematics
    • /
    • v.35 no.1
    • /
    • pp.1-18
    • /
    • 2022
  • This paper presents a statistical machine learning method that generates the implied volatility surface under the rareness of the market data. We apply the practitioner's Black-Scholes model and Gaussian process regression method to construct a Bayesian inference system with observed volatilities as a prior information and estimate the posterior distribution of the unobserved volatilities. The variance instead of the volatility is the target of the estimation, and the radial basis function is applied to the mean and kernel function of the Gaussian process regression. We present two types of Gaussian process regression methods and empirically analyze them.

The Effect of Representative Dataset Selection on Prediction of Chemical Composition for Corn kernel by Near-Infrared Reflectance Spectroscopy (예측알고리즘 적용을 위한 데이터세트 구성이 근적외선 분광광도계를 이용한 옥수수 품질평가에 미치는 영향)

  • Choi, Sung-Won;Lee, Chang-Sug;Park, Chang-Hee;Kim, Dong-Hee;Park, Sung-Kwon;Kim, Beob-Gyun;Moon, Sang-Ho
    • Journal of Animal Environmental Science
    • /
    • v.20 no.3
    • /
    • pp.117-124
    • /
    • 2014
  • The objectives were to assess the use of near-infrared reflectance spectroscopy (NIRS) as a tool for estimating nutrient compositions of corn kernel, and to apply an NIRS-based indium gallium arsenide array detector to the system for collecting spectra and analyzing calibration equations using equipments designed for field application. Partial Least Squares Regression (PLSR) was employed to develop calibration equations based on representative data sets. The kennard-stone algorithm was applied to induce a calibration set and a validation set. As a result, the method for structuring a calibration set significantly affected prediction accuracy. The prediction of chemical composition of corn kernel resulted in the following (kennard-stone algorithm: relative) moisture ($R^2=0.82$, RMSEP=0.183), crude protein ($R^2=0.80$, RMSEP=0.142), crude fat ($R^2=0.84$, RMSEP=0.098), crude fiber ($R^2=0.74$, RMSEP=0.098), and crude ash ($R^2=0.81$, RMSEP=0.048). Result of this experiment showed the potential of NIRS to predict the chemical composition of corn kernel.

Evaluation of Probability Precipitation using Climatic Indices in Korea (기상인자를 이용한 우리나라의 확률강수량 평가)

  • Oh, Tae-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.9
    • /
    • pp.681-690
    • /
    • 2009
  • In this research, design precipitation was calculated by reflecting the climatic indices and its uncertainty assessment was evaluated. Climatic indices used the sea surface temperature and moisture index which observed globally. The correlation coefficients were calculated between the annual maximum precipitation and the climatic indices. and then climatic indices which have the larger correlation coefficient were selected. Therefore, the regression relationship was established by a locally weighted polynomial regression. Next, climatic indices were generated by montecarlo simulation using kernel function. Finally, the design rainfall was calculated by the locally weighted polynomial regression using generated climatic indices. At the result, the comparison of design rainfall between the reflection of the climatic indices and the frequency analysis did not indicate a significant difference. Also, this result can be used as basic data for calculation of probability precipitation to reflect climate change.