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Abstract
Sufficient dimension reduction (SDR) replaces original p-dimensional predictors to a lower-dimensional

linearly transformed predictor. The sliced inverse regression (SIR) has the longest and most popular history of
SDR methodologies. The critical weakness of SIR is its known sensitive to the numbers of slices. Recently,
a fused sliced inverse regression is developed to overcome this deficit, which combines SIR kernel matrices
constructed from various choices of the number of slices. In this paper, the fused sliced inverse regression
and SIR are compared to show that the former has a practical advantage in survival regression over the latter.
Numerical studies confirm this and real data example is presented.

Keywords: bivariate slicing, fused sliced inverse regression, sufficient dimension reduction, sur-
vival analysis

1. Introduction

Sufficient dimension reduction (SDR) in regression of Y ∈ R1|X ∈ Rp = (X1, . . . , Xp)T tries to replace
the original p-dimensional predictors X with a lower-dimensional linear projection predictor without
loss of information about the conditional distribution of Y |X. That is, SDR seeks to find M ∈ Rp×q:

Y X|MTX, (1.1)

where stands for independence, and q ≤ p.
Statement (1.1) indicates that the conditional distributions of Y |X and Y |MTX are the same; there-

fore, the dimension of X is replaced by MTX without loss of information about Y |X. A subspace
spanned by the columns of M satisfying (1.1) is called a dimension reduction subspace. If the inter-
section of all dimension reduction subspaces is a dimension reduction subspace, it is called the central
subspace SY |X. The central subspace is minimal and unique with a restoration that forms the main
stream of SDR literature. Hereafter, the true dimension and orthonormal basis matrix of SY |X will be
denoted as d and η ∈ Rp×d, respectively. The lower-dimensional linear projection predictor ηTX is
called sufficient predictors.

One of the most popular SDR methods should be sliced inverse regression (SIR) (Li, 1991). Im-
plementation of SIR requires a categorization of a response variable Y , called slicing. The selection of
the appropriate number of slices are known to be often critical in the application results; in addition,
there are no optimal or recommended choices that can be used as a thumb rule. Cook and Zhang
(2014) propose a simple solution to overcome this problem by combining sample kernel matrices of
SIR constructed from various numbers of slices. Cook and Zhang (2014) call the combining approach
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fused sliced inverse regression (FSIR). According to Cook and Zhang (2014), the FSIR results in
robust basis estimates of SY |X to the different numbers of slices, varying 3 to 15.

This paper studies FSIR in survival regression (which is out of date) and compares it with SIR
under consideration of various slicing schemes. Slicing with a two dimensional response is more
complex than that with a dimensional response since the survival regression takes the observed sur-
vival time and the censoring indicator as response variables. Therefore, FSIR is expected to have
potential advantages in robustness to the basis estimation of SY |X over SIR.

The organization of the paper is as follows. In Section 2, we discuss a fused sliced inverse re-
gression along with applicability to survival regression. Some issues that can arise in slicing under
survival regression are also discussed in the same section. Section 3 is devoted to numerical studies
and presentation of a real data application. We summarize our work in Section 4. We will define the
following notations, which will be used frequently throughout the rest of the paper. A subspace S(B)
stands for a subspace spanned by the columns of B ∈ Rp×q. We also define that Σ = cov(X).

2. Fused sliced inverse regression in survival regression

2.1. Fused sliced inverse regression

Before explaining SIR (Li, 1991), the predictor X is normalized to Z = Σ−1/2(X−E(X)). Letting SY |Z
be the central subspace for a regression of Y |Z, then the relationship that SY |X = Σ

−1/2SY |Z holds.
Define ηz be p×d orthonormal basis matrix for SY |Z. Consider the linearity condition: (C1) E(Z|ηT

z Z)
is linear in ηT

z Z. According to Li (1991), a proper subspace of SY |Z can be constructed under linearity
condition:

S(E(Z|Y)) ⊆ SY |Z ⇔ S
(
Σ−1E(X|Y)

)
⊆ SY |X.

For the exhaustive estimation of SY |X, it is typically assumed that S(Σ−1E(X|Y)) = SY |X. An estima-
tion of SY |X through E(X|Y) is called sliced inverse regression.

In population, the construction of E(Z|Y) should be done without assuming any specific distri-
butional assumption of Y |Z. If Y is categorical with h levels, E(Z|Y = s) is the mean of Z within
each category of Y . Following this idea, if Y is continuous or many-valued, Y is transformed to a
categorized response Ỹ with h levels. Then compute E(Z|Ỹ = s) for s = 1, . . . , h. This categorization
of Y is called slicing, which is done so that each category has an equal number of observations. The
SIR constructs the kernel matrix of either MSIR = cov(E(Z|Y)) or MSIR = cov(E(Z|Ỹ)). The sample
algorithm for SIR is summarized as:

1. Construct Ỹ by partitioning the range of Y into h non-overlapping intervals to have equal numbers
of the observations as much as possible. Denote ns as the number of observations for Ỹ = s.

2. Compute Ê(Z|Ỹ = s) = (1/ns)
∑

Ỹ=s Ẑi, where Ẑi = Σ̂
−1

(Xi − X̄) and ns stands for the sample size
in the s the slices.

3. Construct M̂SIR as:

M̂SIR = ĉov
{
E

(
Z|Ỹ

)}
=

h∑
s=1

ns

n
Ê

(
Z|Ỹ = s

)
Ê

(
Z|Ỹ = s

)T
.

4. Perform the spectral decomposition on M̂SIR: M̂SIR =
∑p

i=1 λ̂ jγ̂ jγ̂
T
j , where λ̂1 ≥ · · · ≥ λ̂p ≥ 0 are

the ordered-eigenvalues of M̂SIR and γ̂i, i = 1, . . . , p, is the corresponding eigenvector to λ̂i.
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5. Determine the structural dimension d. Let d̂ be an estimate of d.

6. A set of the eigenvectors corresponding to the first d̂ largest eigenvalues is the estimate of ηz:

η̂z =
(
γ̂1, . . . , γ̂d̂

)
.

7. Back-transform to obtain the sample basis estimate for η so that η̂ = Σ̂
−1/2
η̂z.

In the implementation of SIR in practice, the construction of M̂SIR is the main part, which depends
heavily on the selection of h. It is therefore expected that the estimation results by M̂SIR may be
critically different from the numbers of slices.

2.2. Fused sliced inverse regression

To overcome the deficit that SIR is sensitive to the number of slices, Cook and Zhang (2014) propose
a fused approach to combine the MSIR obtained from the various number of slices. First, define that

M(h)
FSIR =

(
M(2)

SIR, . . . ,M
(h)
SIR

)
,

where M(h)
SIR stands for the kernel matrix of SIR with h slices.

Since M(h)
FSIR is a non-decreasing sequence of M(k)

SIR, it is straightforward to hold that

S
(
M(k)

SIR

)
⊆ S

(
M(h)

FSIR

)
, k = 2, . . . , h.

The assumption of S(M(k)
SIR) = SY |Z then induces that

S
(
M(h)

FSIR

)
= SY |Z and Σ−

1
2S

(
M(h)

FSIR

)
= SY |X.

Therefore, M(h)
FSIR is a kernel matrix, whose column spans SY |Z. The estimation of SY |X through M(h)

FSIR
will be called FSIR.

The sample version M̂(h)
FSIR is constructed by replacing M(k)

SIR with M̂(k)
SIR:

M̂(h)
FSIR =

(
M̂(2)

SIR, M̂
(3)
SIR, . . . , M̂

(h)
SIR

)
.

The inference of SY |Z through M̂(h)
FSIR is the same as that through M̂SIR. First, spectral-decompose

M̂(h)
FSIR such that

M̂(h)
FSIR =

p∑
i=1

α̂iϕ̂iϕ̂
T
i ,

where α̂1 ≥ · · · ≥ α̂p ≥ 0 are the ordered-eigenvalues of M̂(h)
FSIR and ϕ̂i, i = 1, . . . , p, is its eigenvector.

Then, the set of the eigenvectors corresponding to the first d̂ largest eigenvalues is the estimate of ηz.
Then, η is estimated by Σ̂

−1/2
η̂z.

It should be noted that any choice of h in M̂(h)
FSIR would give the same asymptotic results, but non

asymptotic behavior can be affected by choices. According to Cook and Zhang (2014), the FSIR is
quite robust to h, compared to SIR.
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2.3. Application to survival regression

Survival regression is a study of the conditional distribution of survival time T , given a set of predictors
X. The direct regression of T |X is not normally plausible since the true survival time T cannot be fully
observed due to censoring. Instead, the data (Yi, δi,Xi), i = 1, . . . , n, are assumed as n i.i.d. realizations
of (T,C,X), where Y = Tδ + C(1 − δ), δ = 0, 1 is an indicator variable with δ = I(C > T ), C is a
censoring time that is considered right-censoring. Accordingly, SDR in the survival regression seeks
to estimate the central subspace ST |X:

T X|ηTX. (2.1)

Since T is not fully unobservable, the direct applications of SIR and FISR on Y |X are not possible to
recover ST |X. It is therefore necessary to establish a plausible regression up to recover ST |X. For this,
consider a regression of (T,C)|X. By construction of (T,C)|X, we have ST |X ⊆ S(T,C)|X. According
to Cook (2003), the central subspace S(Y,δ)|X of the bivariate regression of (Y, δ)|X is informative to
S(T,C)|X , because S(Y,δ)|X ⊆ S(T,C)|X. It should be noted that the estimation of S(Y,δ)|X is plausible,
because (Y, δ,X) are collected for survival analysis. Cook (2003) connects the two regressions of
T |X and (Y, δ)|X under the following condition: (C2) C X|(ηTX,T ). Then, condition C2 forces
statement (2.1) equivalent to (T,C) X|ηTX, that is, S(T,C)|X = ST |X. This then also directly implies
that S(Y,δ)|X ⊆ S(T,C)|X = ST |X. According to Cook (2003), the equality is expected to hold, because
proper containment requires carefully balanced conditions. SIR and FSIR are then directly applicable
with bivariate slicing of Y and δ to recover ST |X.

2.4. Some discussion on bivariate slicing

The bivariate slicing for Y and δ is more systematic than that for Y alone, which is done as follows.
First, slice Y into h slices. Each slice is then divided into two groups based on the values of δ. So, total
numbers of slices are h × 2. This slice scheme is quite troublesome in some cases because the slice
cannot be divided into two groups if δ has only one value of either 0 or 1 in some slices. Chen et al.
(1999) showed that this may lead biases in the process of the dimension reduction. It then becomes
possible that the order of the slices can be changed. That is, slice Y within each group of δ. This
slicing scheme subsequently then results in more unbalanced numbers for observations within each
of the final slices, which is against the usual policy of the slice scheme that the SIR pursues. It is also
not clear which of the two has more advantageous in practice. It is therefore expected that the SIR
application to survival regression is more sensitive to the numbers of slices than to usual regressions
to slice the response alone. This discussion implies that the FSIR has potential advantages over the
SIR in survival regression.

3. Numerical studies and real data application

3.1. Numerical studies

We consider two types of survival regressions, which are accelerated failure time (AFT) and Cox-
proportional Hazards (CPH) models. For both models, the predictors of X = (X1, . . . , X10)T were
independently sampled from N(0, 1). For η0 = (1/

√
55)(1, 2, 3, 4, 5, 0, 0, 0, 0, 0), one-dimensional

linear combination ηTX of X was constructed, so that η has the unit length.
With this predictor setting, the following AFT model, shown in Section 5 of Datta et al. (2007),



Fused sliced inverse regression in survival analysis 537

was generated:

T |X iid∼ exp
(
ηTX + ε

)
,

where a random error ε, which is independent of X, was randomly sampled from N(0, 1). The survival
regression of T |X then follows a log-normal distribution. A censoring variable C was also randomly
generated from a log-normal distribution exp{N(c0

√
2, 2)} so that C X.

For CPH models, first, we followed an example in Section 4.2 of Yoo and Lee (2011). Its hazard
and baseline hazard rates are λ = exp(ηTX) and λ0(t) = 1, respectively, where t stands for the value of
survival time. The second CPH model is constructed by λ = exp(ηTX) and λ0(t) = ωtω−1 for a hazard
function and baseline hazard rates, respectively. In the second model, the hazard rate increases with
ω > 1, and decreases with 0 < ω < 1. If ω = 1, the second CPH model is equivalent to the first
one. For the CPH models, a censoring time C was randomly generated from Uniform(0, c0), which is
independent of X. For the second CPH model, two values of 0.5 and 2 were considered for ω.

In the AFT and CPH models, the right-censoring scheme was considered, so the observed survival
time Y is equal to min(T,C). The censoring status δ is also equal to 1, if C > T , and 0, otherwise.
The sufficient predictor ηTX is supposed to be estimated better with smaller censoring percentages
since censoring variables are generated independently of X. Therefore, as discussed in Section 2.3,
the censoring percentages affect the asymptotic behaviors of SIR and FISR in the basis estimation.
For this, c0 was selected to control the average censoring percentages. We considered 30%, 50%, 70%
and 80% of censoring. For the second CPH model with ω = 0.5, the case of 80% censoring was ruled
out, because numerical errors occurred too often.

To measure how well η is estimated, the trace correlation r (Hooper, 1959) between η and η̂ was
considered:

r =

√
trace

(
η̂
(
η̂Tη̂

)−1
η̂Tη

(
ηTη

)−1 ηT
)
.

To covert the correlation (larger, better) to the distance (smaller to better), we define the trace distance
of rD = 1 − r. With n = 100 and 1,000 iterations of each model, the averages of rD are computed
and reported in Figures 1–3. In the figure, “Fk.i” and “Sk.i” stand for FSIR and SIR, respectively.
The script i in “Fk.i” and “Sk.i” indicates the numbers of slices for bivariate slicing of Y and δ. For
example, if i = 6, the number of slices of Y is equal to 3, because δ is categorical with two levels.
We considered i = 6, 8, 10 and i = 4, 6, 8, 10 for SIR and FSIR, respectively. For “Fk.i” and “Sk.i”, k
varies from 1 to 3 and 1 to 2, respectively. If k = 1, Y is sliced within each category of the censoring
status δ. For k = 2, Y is sliced first, and then each slice is re-categorized based on the values of δ. If
k = 3, the two cases of k = 1 and 2 are fused.

According to Figures 1–3, for the AFT and CPH models, the accuracy in the estimation of η
deteriorates as the average censoring percentages increase. Comparing the sensitiveness to the number
of slices between FSIR and SIR, SIR becomes more sensitive to the number of slices than FISR
with larger average censoring percentages. FSIR remains quite robust regardless of the censoring
percentages. For both SIR and FSIR, the slicing order of Y and δ seem not to matter in the estimation
of η. The numerical studies meet our expectations and confirm the potential advantages of FSIR over
SIR in survival regression.

3.2. Primary biliary cirrhosis data

For illustration purposes, we use primary biliary cirrhosis (PBC) data in Tibshirani (1997) and Yoo
and Lee (2011). The data is collected at the Mayo Clinic between 1974 and 1986 and consists of the
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Figure 1: Averages of the trace distances for the accelerated failure time model in Section 3.1.
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Figure 2: Averages of the trace distances for the Cox-proportional Hazards model with baseline hazards equal to
1 in Section 3.1.

following 19 variables with 276 observations:

• Y = the number of days between registration and the earlier of death or censoring

• δ = 1, if Y is time to death; 0 otherwise

• X1 Treatment code: 1 = D-Penicillamine, 2 = placebo

• X2 Age in years

• X3 Gender: 0 = male, 1 = female



Fused sliced inverse regression in survival analysis 539

Kind

T
ra

c
e
 D

is
ta

n
c
e

F1.6 F1.8 F1.10 F2.6 F2.8 F2.10 F3.6 F3.8 F3.10 S1.4 S1.6 S1.8 S1.10 S2.4 S2.6 S2.8 S2.10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

80% Censoring Rate

70% Censoring Rate

50% Censoring Rate

30% Censoring Rate

(a) ω = 2

Kind

T
ra

c
e
 D

is
ta

n
c
e

F1.6 F1.8 F1.10 F2.6 F2.8 F2.10 F3.6 F3.8 F3.10 S1.4 S1.6 S1.8 S1.10 S2.4 S2.6 S2.8 S2.10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

70% Censoring Rate

50% Censoring Rate

30% Censoring Rate

(b) ω = 0.5

Figure 3: Averages of the trace distances for the Cox-proportional Hazards model with baseline hazards equal to
ωtω−1 in Section 3.1.

• X4 Presence of ascites: absent = 0 or present = 1

• X5 Presence of Hepatomegaly: absent = 0 or present = 1

• X6 Presence of spiders: 0 = no or 1 = yes

• X7 Presence of edema: absent and no diuretic therapy = 0, present but no diuretic therapy or edema
resolved by diuretics = 0.5 or present despite diuretic therapy = 1
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Table 1: The average and maximum trace distances for each of FSIR and SIR applications to PBC data in
Section 3.2

Method d = 1 d = 2 d = 3

Averages FSIR 0.003 0.013 0.025
SIR 0.018 0.080 0.093

Maximum FSIR 0.029 (F1.10 & F2.6) 0.079 (F1.6 & F1.10) 0.101 (F1.10 & F2.6)
SIR 0.086 (S1.10 & S2.4) 0.263 (S1.4 & S1.10) 0.176 (S1.8 & S2.4)

FSIR = fused sliced inverse regression; SIR = sliced inverse regression.

• X8 Serum bilirubin, in mg/dl

• X9 Serum cholesterol, in mg/dl

• X10 Albumin, in g/dl

• X11 Urine copper, in µg/day

• X12 Alkaline phosphatase, in U/liter

• X13 SGOT, in U/ml

• X14 Triglycerides, in mg/dl

• X15 Platelet count; coded value is number of platelets per cubic ml of blood divided by 1,000

• X16 Prothrombin time, in seconds

• X17 Histologic state of disease, graded 1, 2, 3, or 4

Tibshirani (1997) fitted the data to the CPH model with the 17 predictors, and Yoo and Lee (2011)
applied SIR to the PBC data for model-free variable selection.

In the data, the censoring percentage is about 60%, so it is expected that SIR applications with 4,
6, 8, 10 slices yield similar basis estimates. The same slicing schemes as the numerical studies are
used for FSIR and SIR. After conducting the various application of FSIR and SIR, the trace distances
between η̂(m)

Fk.i and η̂(m)
Sk.i are computed given d = m for m = 1, 2, 3. Since d is not be determined in this

example, the basis are estimated via various choices of d. The maximum value for d is three, because
Sk.4 can yield only a three-dimensional basis. Table 1 reports the average and maximum distances for
each of FSIR and SIR instead of comparing all trace distances. In Table 1, ( · , · ) next to the distances
stands for the cases to give the maximum distances.

Table 1 also indicates that FSIR is clearly more robust to slicing schemes for any choices of d than
the SIR. Considering the averages, the FSIR and the SIR seem to have no notable differences for the
slicing schemes. However, investigating the maximum distance, FSIR produce more robust estimates
than SIR. Especially, with d = 2, the difference between FSIR and SIR in the maximum is 0.16, which
seems non-trivial.

4. Conclusion

The goal of the paper is to study FSIR (Cook and Zhang, 2014) in survival regression. Bivariate
slicing schemes can affect the estimation of the central subspace by a SIR (Li, 1991) since survival
regression considers the observed survival time and censoring status as responses. This issue can be
relieved by fusing SIR kernel matrices from the various bivariate slicing schemes. To reach the goal,
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the FSIR applies to survival regression by considering various slicing schemes, and is compared with
SIR.

Numerical studies confirm that the FSIR has potential advantages in the basis estimation in sur-
vival regression over SIR. The real data application also shows that the FSIR results in more robust
estimates than SIR.

FSIR cannot have a direct application to correlated or clustered survival data since the SIR is based
on iid observations. A study along with this side is in progress.

Acknowledgments

The authors are grateful to two reviewers and Associate Editor for insightful comments to improve
the paper. For the author Jae Keun Yoo, this work was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea (NRF) funded by the Korean Ministry of
Education (NRF-2014R1A2A1A11049389 and 2009-0093827).

References

Chen CH, Li KC, and Wang JL (1999). Dimension reduction for censored regression data, The Annals
of Statistics, 27, 1–23.

Cook RD (2003). Dimension reduction and graphical exploration in regression including survival
analysis, Statistics in Medicine, 22, 1399–1413.

Cook RD and Zhang X (2014). Fused estimators of the central subspace in sufficient dimension
reduction, Journal of the American Statistical Association, 109, 815–827.

Datta S, Le-Rademacher J, and Datta S (2007). Predicting patient survival from microarray data by
accelerated failure time modeling using partial least squares and LASSO, Biometrics, 63, 259–
271.

Hooper JW (1959). Simultaneous equations and canonical correlation theory, Econometrica, 27, 245–
257.

Li KC (1991). Sliced inverse regression for dimension reduction, Journal of the American Statistical
Association, 86, 316–327.

Tibshirani R (1997). The lasso method for variable selection in the Cox model, Statistics in Medicine,
16, 385–395.

Yoo JK and Lee K (2011). Model-free predictor tests in survival regression through sufficient dimen-
sion reduction, Lifetime Data Analysis, 17, 433–444.

Received July 21, 2017; Revised September 4, 2017; Accepted September 14, 2017




