This study aimed to develop a precise vegetation cover classification model for small streams using the combination of drone remote sensing and support vector machine (SVM) techniques. The chosen study area was the Idong stream, nestled within Geosan-gun, Chunbuk, South Korea. The initial stage involved image acquisition through a fixed-wing drone named ebee. This drone carried two sensors: the S.O.D.A visible camera for capturing detailed visuals and the Sequoia+ multispectral sensor for gathering rich spectral data. The survey meticulously captured the stream's features on August 18, 2023. Leveraging the multispectral images, a range of vegetation indices were calculated. These included the widely used normalized difference vegetation index (NDVI), the soil-adjusted vegetation index (SAVI) that factors in soil background, and the normalized difference water index (NDWI) for identifying water bodies. The third stage saw the development of an SVM model based on the calculated vegetation indices. The RBF kernel was chosen as the SVM algorithm, and optimal values for the cost (C) and gamma hyperparameters were determined. The results are as follows: (a) High-Resolution Imaging: The drone-based image acquisition delivered results, providing high-resolution images (1 cm/pixel) of the Idong stream. These detailed visuals effectively captured the stream's morphology, including its width, variations in the streambed, and the intricate vegetation cover patterns adorning the stream banks and bed. (b) Vegetation Insights through Indices: The calculated vegetation indices revealed distinct spatial patterns in vegetation cover and moisture content. NDVI emerged as the strongest indicator of vegetation cover, while SAVI and NDWI provided insights into moisture variations. (c) Accurate Classification with SVM: The SVM model, fueled by the combination of NDVI, SAVI, and NDWI, achieved an outstanding accuracy of 0.903, which was calculated based on the confusion matrix. This performance translated to precise classification of vegetation, soil, and water within the stream area. The study's findings demonstrate the effectiveness of drone remote sensing and SVM techniques in developing accurate vegetation cover classification models for small streams. These models hold immense potential for various applications, including stream monitoring, informed management practices, and effective stream restoration efforts. By incorporating images and additional details about the specific drone and sensors technology, we can gain a deeper understanding of small streams and develop effective strategies for stream protection and management.
The Transactions of the Korea Information Processing Society
/
v.13
no.2
/
pp.48-59
/
2024
As functions that support virtualization on their own in hardware are developed, user applications having various workloads are operating efficiently in the virtualization system. SR-IOV is a virtualization support function that takes direct access to PCI devices, thus giving a high I/O performance by minimizing the need for hypervisor or operating system interventions. With SR-IOV, network I/O acceleration can be realized in virtualization systems that have relatively long I/O paths compared to bare-metal systems and frequent context switches between the user area and kernel area. To take performance advantages of SR-IOV, network resource management policies that can derive optimal network performance when SR-IOV is applied to an instance such as a virtual machine(VM) or container are being actively studied.This paper evaluates and analyzes the network performance of SR-IOV implementing I/O acceleration is compared with Virtio in terms of 1) network delay, 2) network throughput, 3) network fairness, 4) performance interference, and 5) multi-network. The contributions of this paper are as follows. First, the network I/O process of Virtio and SR-IOV was clearly explained in the virtualization system, and second, the evaluation results of the network performance of Virtio and SR-IOV were analyzed based on various performance metrics. Third, the system overhead and the possibility of optimization for the SR-IOV network in a virtualization system with high VM density were experimentally confirmed. The experimental results and analysis of the paper are expected to be referenced in the network resource management policy for virtualization systems that operate network-intensive services such as smart factories, connected cars, deep learning inference models, and crowdsourcing.
Objective: The experiment aimed to determine the standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AA) in 10 brown rice samples fed to pigs, and to construct predictive models for SID of CP and AA based on the physical characteristics and chemical composition of brown rice. Methods: Twenty-two cannulated pigs (initial body weight: 42.0±1.2 kg) were assigned to a replicated 11×3 incomplete Latin square design, including an N-free diet and 10 brown rice diets. Each period included 5 d adaptation and 2 d ileal digesta collection. Chromic oxide was added at 0.3% to all the diets as an indigestible marker for calculating the ileal CP and AA digestibility. Results: The coefficients of variation of all detected indices for physical characteristics and chemical composition, except for bulk weight, dry matter (DM) and gross energy, in 10 brown rice samples were greater than 10%. The SID of CP, lysine (Lys), methionine, threonine (Thr), and tryptophan (Trp) in brown rice was 77.2% (62.6% to 85.5%), 87.5% (80.3% to 94.3%), 89.2% (78.9% to 98.9%), 55.4% (46.1% to 67.6%) and 92.5% (86.3% to 96.3%), respectively. The best prediction equations for the SID of CP, Lys, Thr, and Trp were as following, SIDCP = -664.181+8.484×DM (R2 = 0.40), SIDLys = 53.126+6.031×ether extract (EE)+0.893×thousand-kernel volume (R2 = 0.66), SIDThr = 39.916+7.843×EE (R2 = 0.41), and SIDTrp = -361.588+4.891×DM+0.387×total starch (R2 = 0.85). Conclusion: Overall, a great variation exists among 10 sources of brown rice, and the thousand-grain volume, DM, EE, and total starch can be used as the key predictors for SID of CP and AA.
Developing improved wheat varieties is vital for global food security to meet the rising demand for food. Therefore, assessing the genetic diversity across wheat genotypes is crucial. This study examined the diversity of 168 durum wheat and 47 common wheat collections from 54 different countries using twelve agro-morphological parameters. Geumgang, a prominent Korean common wheat variety, was used as a control. Both qualitative and quantitative agronomical characteristics showed wide variations. Most durum wheats were shown to possess dense spikes (90%), while common wheats showed dense (40%) or loose (38%) spikes, with yellowish-white being the dominant spike color. The majority of the accessions were awned regardless of wheat type, yellowish-white being the main awn color. White or red kernels were produced, with white kernels dominating in both common (74%) and durum (79%) wheats. Days to heading (DH) and days to maturity (DM) were in the ranges of 166-215 and 208-250 days, respectively, while the culm length (CL), spike length (SL), and awn length (AL) were in the ranges of 53.67-163, 5.33-18.67, and 0.50-19.00 cm, respectively. Durum wheats possessed the shortest average DH, DM, and SL, while common wheat had the longest CL and AL (p < 0.05). Common wheats also exhibited the highest average one-thousand-kernel weight. Hierarchical cluster analysis, aided by principal component analysis, grouped the population into seven clusters with significant differences in their quantitative variables (p < 0.05). In conclusion, this research revealed diversity among common and durum wheat genotypes. Notably, 26 durum wheat and 17 common wheat accessions outperformed the control, offering the potential for developing early-maturing, high-yielding, and lodging-resistant wheat varieties.
In light of recent social concerns related to issues such as water supply pipe deterioration leading to problems like leaks and degraded water quality, the significance of maintenance efforts to enhance water source quality and ensure a stable water supply has grown substantially. In this study, scan statistic was applied to analyze water quality complaints and water leakage accidents from 2015 to 2021 to present a reasonable method to identify areas requiring improvement in water management. SaTScan, a spatio-temporal statistical analysis program, and ArcGIS were used for spatial information analysis, and clusters with high relative risk (RR) were determined using the maximum log-likelihood ratio, relative risk, and Monte Carlo hypothesis test for I city, the target area. Specifically, in the case of water quality complaints, the analysis results were compared by distinguishing cases occurring before and after the onset of "red water." The period between 2015 and 2019 revealed that preceding the occurrence of red water, the leak cluster at location L2 posed a significantly higher risk (RR: 2.45) than other regions. As for water quality complaints, cluster C2 exhibited a notably elevated RR (RR: 2.21) and appeared concentrated in areas D and S, respectively. On the other hand, post-red water incidents of water quality complaints were predominantly concentrated in area S. The analysis found that the locations of complaint clusters were similar to those of red water incidents. Of these, cluster C7 exhibited a substantial RR of 4.58, signifying more than a twofold increase compared to pre-incident levels. A kernel density map analysis was performed using GIS to identify priority areas for waterworks management based on the central location of clusters and complaint cluster RR data.
Rotsnarani Sethy;Soumya Ranjan Mahanta;Mrutyunjaya Panda
International Journal of Computer Science & Network Security
/
v.24
no.9
/
pp.30-40
/
2024
Building an accurate 3-D spatial road network model has become an active area of research now-a-days that profess to be a new paradigm in developing Smart roads and intelligent transportation system (ITS) which will help the public and private road impresario for better road mobility and eco-routing so that better road traffic, less carbon emission and road safety may be ensured. Dealing with such a large scale 3-D road network data poses challenges in getting accurate elevation information of a road network to better estimate the CO2 emission and accurate routing for the vehicles in Internet of Vehicle (IoV) scenario. Clustering and regression techniques are found suitable in discovering the missing elevation information in 3-D spatial road network dataset for some points in the road network which is envisaged of helping the public a better eco-routing experience. Further, recently Explainable Artificial Intelligence (xAI) draws attention of the researchers to better interprete, transparent and comprehensible, thus enabling to design efficient choice based models choices depending upon users requirements. The 3-D road network dataset, comprising of spatial attributes (longitude, latitude, altitude) of North Jutland, Denmark, collected from publicly available UCI repositories is preprocessed through feature engineering and scaling to ensure optimal accuracy for clustering and regression tasks. K-Means clustering and regression using Support Vector Machine (SVM) with radial basis function (RBF) kernel are employed for 3-D road network analysis. Silhouette scores and number of clusters are chosen for measuring cluster quality whereas error metric such as MAE ( Mean Absolute Error) and RMSE (Root Mean Square Error) are considered for evaluating the regression method. To have better interpretability of the Clustering and regression models, SHAP (Shapley Additive Explanations), a powerful xAI technique is employed in this research. From extensive experiments , it is observed that SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions with an accuracy of 97.22% and strong performance metrics across all classes having MAE of 0.0346, and MSE of 0.0018. On the other hand, the ten-cluster setup, while faster in SHAP analysis, presented challenges in interpretability due to increased clustering complexity. Hence, K-Means clustering with K=4 and SVM hybrid models demonstrated superior performance and interpretability, highlighting the importance of careful cluster selection to balance model complexity and predictive accuracy.
Journal of the Korea institute for structural maintenance and inspection
/
v.28
no.5
/
pp.62-68
/
2024
The Republic of Korea experiences four distinct seasons, with significant temperature differences between summer and winter, causing bridges to undergo large temperature variations throughout the year. When the temperature changes, the dynamic characteristics of bridge structures also change. However, during load-bearing capacity assessments in domestic bridge maintenance, this temperature effect is not considered, and only the natural frequency measured over a short period is used for evaluation. In this paper, we theoretically analyze the impact of changes in natural frequency on bridges and extract daily estimated natural frequency data from bridges with continuous vertical acceleration measurements taken over more than a year to confirm temperature-induced changes. The results show that a 1% decrease in natural frequency corresponds to an approximately 2% decrease in the load-bearing capacity of the bridge. Additionally, it was found from the measurement data that a 10℃ increase in temperature did not affect the natural frequency of RC slab bridges and Rahmen bridges, but in PSC-I girder bridges and steel box girder bridges, the natural frequency decreased by approximately 1.04% to 2.48%.
To obtain information on the inheritance of the quantitative characters related with the vegetative and reproductive growth of rice, the $F_1$ seeds were obtained in 1974 from the all possible combinations of the diallel crosses among five leading rice varieties : Nongbaek, Tongil, Palgueng, Mangyeong and Gimmaze. The $F_1$'s including reciprocals and parents were grown under the standard cultivation method at Chungnam Provincial Office of Rural Development in 1975. The arrangement of experimental plots was randomized block design with 3 replications and 12 characters were used for the analysis. Analytical procedure for genetic components was followed the Griffing's and Hayman's methods and the results obtained are summarized as follows. 1. In all $F_1$'s of Tongil crosses, the longer duration to heading was due to dominant effect of Tongil and each $F_1$ showed high heterosis in delaying the heading time. It was assumed that non-allelic gene action besides dominant gene effect might be involed in days to heading character. However, in all $F_1$'s from the crosses among parents excluding Tongil the shorter duration was due to dominant gene action and the degree of dominance was partial, since dominance effects were not greater than the additive effect. The non-allelic gene interaction was not significant. Considering the results mentioned above, it was regarded that there were two kinds of Significantly different genetic systems in the days to heading. 2. The rate of heterosis was significantly different depending upon the parents used in the crosses. For instance, the $F_1$'s from Togil cross showed high rate of heterosis in longer culm. Compared to short culm, longer culm was due to recesive gene action and short culm was due to recesive gene action. The dominant gene effect was greater than the additive gene effect in culm length. The narrow sense of heretability was very low and the maternal effects as well as reciprocal effects were significantly recognized. 3. The lenght of the of the uppermost internode of each $F_1$ plant was a little lorger than these of respective parental means or same as those of parents having long internodes, indicating partial dominance in the direction of lengthening the uppermost internodes. The additive gene effects on the uppermost internode was greater than the dominance gene effect. The narrow as well as broad sense of heritabilities for the character of the uppermost internode were very high. There were significant maternal and reciprocal effect in the uppermost internode. 4. The gene action for the flag leaf angle was rather dominance in a way of getting narrower angle. However, in the Palgueng combinations, heterosis of $F_1$ was observed in both narrow and wide angles of the flag leaf. The dominant effects were greater than the additive effects on the flag leaf angle. There were observed also a great deal of non-allelic gene interacticn on the inheritance of the flag leaf angle. 5. Even though the dominant gene action on the length and width of flag leaf was effective in increasing the length or width of the flag leaf, there were found various degrees of hetercsis depending upon the cross combination. Over-dominant gene effect were observed in the inheritance of length of the flag leaf, while additive gene effects was found in the inheritance of the width of the flag leaf. High degree of heretabilities, either narrow or broad sense, were found in both length and width of the flag leaf. No maternal and reciprocal effect were found in both characters. 6. When Tongil was used as one parent in the cross, the length of panicle of $F_1$'s was remarkedly longer than that of parents. In other cross comination, the length of panicle of $F_1$'s was close to the parental mean values. Rather greater dominent gene effect than additive gene effect was observed in the inheritance of panicle length and the dominant gene was effective in increasing the panicle length. 7. The effect of dominant genes was effective in increasing the number of panicles. The degree of heterosis was largely dependent on the cross combination. The effect of dominant gene in the inheritance of panicle number was a little greater than that of additive genes, and the inheritance of panicle number was assumed to be due to complete dominant gene effects. Significantly high maternal and reciprocal effects were found in the character studied. 8. There were minus and plus values of heterosis in the kernel number per panicle depending upon the cross combination. The mean dominant effect was effective in increasing the kernel number per panicle, the degree of dominant effect varied with cross combination. The dominant gene effect and non-allelic gene interaction were found in the inheritance of the kernel number per panicle. 9. Genetic studies were impossible for the maturing ratio, because of environmental effects such as hazards delaying heads. The dominant gene effect was responsible for improving the maturing ratio in all the cross combinations excluding Tongil 10. The heavier 1000 grain weight was due to dominant gene effects. The additive gene effects were greater than the dominant gene effect in the 1000 grain weight, indicating that partial dominance was responsible for increasing the 1000 grain weight. The heritabilites, either narrow or broad sense of, were high for the grain weight and maternal or reciprocal effects were not recognized. 11. When Tongil was used as parent, the straw weight was showing high heterosis in the direction of increasing the weight. But in other crosses, the straw weight of $F_1$'s was lower than those of parental mean values. The direction of dominant gene effect was plus or minus depending upon the cross combinations. The degree of dominance was also depending on the cross combination, and apparently high nonallelic gene interaction was observed.
The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s-1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great progress and success was obtained in development of high-quality japonica cultivars and quality evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice cultivars and special rices adaptable for food processing such as large kernel, chalky endosperm, aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer, Recently, new special rices such as extremely low-amylose dull or opaque non-glutinous endosperm mutants were developed. Also, a high-lysine rice variety was developed for higher nutritional utility. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and texture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak, hot paste and consistency viscosities of viscosities with year difference. The high-quality rice variety "IIpumbyeo" showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic microscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high probability of determination. The $\alpha$-amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were IIpumbyeo, Chucheongyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tonsil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, showed the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogradation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice breed. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large grain rices showed better suitability far fermentation and brewing. The glutinous rice were classified into nine different varietal groups based on various physicochemical and structural characteristics of endosperm. There was some close associations among these grain properties and large varietal difference in suitability to various traditional food processing. Our breeding efforts on improvement of rice quality for high palatability and processing utility or value-adding products in the future should focus on not only continuous enhancement of marketing and eating qualities but also the diversification in morphological, physicochemical and nutritional characteristics of rice grain suitable for processing various value-added rice foods.ice foods.
Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.