• Title/Summary/Keyword: kappa opioid receptor

Search Result 21, Processing Time 0.029 seconds

LIGAND BINDING CHARACTERISTICS OF $K_2$- OPIOID RECEPTOR AND ITS ROLE IN REGULATION OF 〔$^3$H〕HISTAMINE RELEASE IN FRONTAL CORTEX OF THE RAT

  • Kim, Kee-Won-;Park, Kyu--Cho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.305-305
    • /
    • 1994
  • It has been shown that there are several subtypes of $\kappa$ opioid receptor, We have evaluated the properties of non-${\mu}$, non-$\delta$ binding of 〔$^3$H〕DIP, a nonselective opioid antagonist, in rat cortex membranes. Binding to ${\mu}$ and $\delta$ sites was inhibited by the use of an excess of competing selective agonists (DAMGO, DPDPE) for these sites. (-)Ethylketocyclazocine(EKC) inhibited 〔$^3$H〕DIP binding with Ki. of 70 nM. However, arylacetamides (U69593 and U50488H) gave little inhibition. Also, we have examined the opioid modulation of K$\^$+/(30 mM)-induced histamine release in rat frontal cortex slices labeled with 1-〔$^3$H〕histidine. The 〔$^3$H〕histamine release from cortex slices was inhibited by EKC, a $\kappa$$_1$-and $\kappa$$_2$-agonist, in a concentration-dependent manner(10 to 10,000 nM). The IC$\sub$50/ of EKC was 107 ${\pm}$ 6 nM. However, the $\delta$ receptor selective agonists, DPDPE and deltorphine II, ${\mu}$ receptor agonists, DAMGO and TAPS, $\kappa$$_1$-agonists, U69593 and U50488H, and $\varepsilon$-agonist, ${\beta}$-endorphin, did not inhibit histamine release even in micromoiar dose, indicating that ${\mu}$, $\delta$ or $\kappa$$_1$ receptors are not involved. The concentration-response curve of EKC was shifted to right in the presence of naloxone (300 nM), a ${\mu}$ preferential antagonist, norbinaltorphimine(300 nM), a $\kappa$$_1$ preferential antagonist and bremazocine(1 nM), a $\kappa$$_1$-agonist and $\kappa$$_2$-antagonist. These results suggest that $\kappa$$_2$ opioid receptor regulates histamine release in the frontal cortex of the rat.

  • PDF

Characteristics of Opioid k-Receptors in Rat and Guinea Pig Cortex (백서와 기니픽의 대뇌피질에서 Opioid Kappa 수용체의 특성에 관한 연구)

  • Kim, Kee-Won;Rho, Hye-Won;Kim, Hyoung-Il;Eun, Jae-Soon;Soh, Soo-Mi;Cho, Kyu-Park
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.2
    • /
    • pp.153-165
    • /
    • 1994
  • In this study, we tested the influences of several ${\kappa}$ opioid ligands on the $[^3H]diprenorphine$ binding in rat and guinea pig cortex membrane preparations. Using paradigm to block ${\mu}\;and\;{\delta}$ opioid receptors with $DAMGO(1{\mu}M)$ and $DPDPE(1{\mu}M)$, $[^3H]diprenorphine$ labeled ${\kappa}$ sites. Competition analysis in both rat and guinea pig cortex has shown a single population of $[^3H]diprenorphine$ binding site with different Kd values, respectively. There is a significant difference in Ki values of (-) WIN44441 and (+)WIN44441 in both rat and guinea pig cortex. Bremazocine, (-)ethylketocyclazocine, (-)cyclazocine, nor-binaltorphimine effectively inhibited the $[^3H]diprenorphine$ binding with different Ki values in rat and guinea pig cortex. U-69,593, U-50,488H and dynorphine-A (1-8) did not inhibit the $[^3H]diprenorphine$ binding in rat but in guinea pig cortex. Nor-binaltorphimine was a ligand discriminate the ${\kappa}_1$, and ${\kappa}_2$ receptor most effectively. We, also, examined the influence of Na ion and $GTP{\gamma}S$, a nonhydrolyzable guanine nucleotide analog, on the inhibition of $[^3H]diprenorphine$ binding by diprenorphine, (-)ethyl-ketocyclazocine, U-69,593 and bremazocine. By the replacement of NaCl with N-methy-D-glucamine or addition of $GTP{\gamma}S$, Ki values of diprenorpnine were not changed and that of ethylketocyclazocine were changed significantly in both rat and guinea pig cortex. The Ki value of bremazocine was decreased by removal of Na ion, and increased by $GTP{\gamma}S$, however, was not changed by any one of either. These results suggest that there are 2 kinds of subtypes of ${\kappa}$ opioid receptor, ${\kappa}_1$, and ${\kappa}_2$, showing different Ki values for various ${\kappa}$ opioid ligands, also, bremazocine possess the antagonistic property at ${\kappa}_2$ site which is dominant subtype of K receptor in rat cortex.

  • PDF

Regulation of Histamine Release by Kappa Opioid Receptor in Rat Cortical Slices (백서 대뇌피질에서 Opioid Kappa수용체의 Histamine 유리조절기능에 관한 연구)

  • Kim, Kee-Won;Cho, Kyu-Park
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 1994
  • It has been shown that there are several subtypes of ${\kappa}$ opioid receptor. We examined ligand binding profiles and the effects of various opioid agonists on high potassium-stimulated release of $[^3H]$ histamine. We have evaluated the properties of $non-{\mu},\;non-{\delta},$ binding of $[^3H]\;DIP\;([^3H]\;diprenorphine),$ anonselective opioid antagonist, in rat cortex membranes. Binding $to\;{\mu}\;and\;{\delta}$ sites was inhibited by the use of an excess of competing selective agonists (DAMGO, DPDPE) for these sites. (-) Ethylketocyclazocine (EKC), DIP and bremazocine inhibited $[^3H]$ DIP binding. However, arylacetamides (U69593 and U50488H) gave little inhibition Replacement of sodium by NMDG and the addition of guanine nucleotide influenced the inhibitory potency of (-) EKC, an agonist for {\kappa}_1-and-{\kappa}_2-binding site, but not of bremazocine. This result suggests that bremazocine can be an antagonist at this binding site. Also, we have examined the opioid modulation of $K^+(30mM)-induced\;[^3H]\;histamine$ release in rat frontal cortex slices labeled with $1-[^3H]\;histidine$. The $[^3H]\; histamine$ release from cortex slices was inhibited by EKC in a concentration-dependent manner. However, the ${\delta}$ receptor selective agonists, DPDPE and deltorphine II, ${\mu}$ receptor agonists, DAMGO and TAPS, ${\kappa}_1-agonists$, U69593 and U50488H, and ${\varepsilon}-agonist,\;{\beta}-endorphin,$ did not. The concentration-response curve of EKC was shifted to right in the presence of naloxone, nor-binaltorphimine and bremazocine, respectively. These results suggest that ${\kappa}_2$ opioid receptor regulates histamine release in the fromtal cortex of the rat.

  • PDF

Effects of Whole Body Irradiation on Morphine, DAMGO, DPDPE, U50,488H and $\beta$-endorphin-Induced Antinociception

  • Park, Tae-Won;Kim, Jin-Kyu;Jeong, Jae-Soo;Kim, Tae-Wan;Cho, Young-Kyung;Kim, Kyung-Nyun;Chung, Ki-Myung
    • International Journal of Oral Biology
    • /
    • v.37 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Opioid receptors have been pharmacologically classified as ${\mu}$, ${\delta}$, ${\kappa}$ and ${\varepsilon}$. We have recently reported that the antinociceptive effect of morphine (a ${\mu}$-opioid receptor agonist), but not that of ${\beta}$-endorphin (a novel ${\mu}/{\varepsilon}$-opioid receptor agonist), is attenuated by whole body irradiation (WBI). It is unclear at present whether WBI has differential effects on the antinociceptive effects of ${\mu}-$, ${\delta}-$, ${\kappa}-$ and ${\varepsilon}$-opioid receptor agonists. In our current experiments, male ICR mice were exposed to WBI (5Gy) from a $^{60}Co$ gamma-source and the antinociceptive effects of opioid receptor agonists were assessed two hours later using the hot water ($52^{\circ}C$) tail-immersion test. Morphine and $D-Ala^2$, $N-Me-Phe^4$, Gly-olenkephalin (DAMGO), [$D-Pen^2-D-Pen^5$] enkephalin (DPDPE), trans-3,4-Dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamide (U50,488H), and ${\beta}$-endorphin were tested as agonists for ${\mu}$, ${\delta}$, ${\kappa}$, and ${\varepsilon}$-opioid receptors, respectively. WBI significantly attenuated the antinociceptive effects of morphine and DAMGO, but increased those of ${\beta}$-endorphin. The antinociceptive effects of DPDPE and U50,488H were not affected by WBI. In addition, to more preciously understand the differential effects of WBI on ${\mu}-$ and ${\varepsilon}$-opioid receptor agonists, we assessed pretreatment effects of ${\beta}$-funaltrexamine (${\beta}$-FNA, a ${\mu}$-opioid receptor antagonist) or ${\beta}$-$endorphin_{1-27}$ (${\beta}$-$EP_{1-27}$, an ${\varepsilon}$-opioid receptor antagonist), and found that pretreatment with ${\beta}$-FNA significantly attenuated the antinociceptive effects of morphine and ${\beta}$-endorphin by WBI. ${\beta}$-$EP_{1-27}$ significantly reversed the attenuation of morphine by WBI and significantly attenuated the increased effects of ${\beta}$-endorphin by WBI. The results demonstrate differential sensitivities of opioid receptors to WBI, especially for ${\mu}-$ and ${\varepsilon}$-opioid receptors.

Effects of Neuroleptics on the Opioid Receptor Binding in the Mouse Striatum (마우스 선조체에서 Opioid 수용체 결합에 대한 Neuroleptics의 영향)

  • Kim, Soo-Kyung;Lee, Seong-Ryong;Park, Chang-Gyo
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.3
    • /
    • pp.291-297
    • /
    • 1994
  • Our purpose was to gain insight into a possible modulatory role for ${\mu},\;{\delta},\;and\;{\kappa}$ opioid receptors by neuroleptics (chlorpromazine, thioridazine, haloperidol, sulpiride, and pimozide) in chronic morphine 5 mg/kg and 20 mg/kg treated mouse striatum. We attempted quantitative receptor assays using highly specific radioligands, $[^3H]\;DAGO\;([D-Ala^2,\;N-Mephe^4,\;Glycol^5]\;enkephalin)$, $[^3H]DPDPE\;([D-Pen^2,\;D-Pen^5]\;enkephalin)$ and $[^3H]\;DPN(diprenorphine)$ to measure the binding affinity in the experimental groups. The decrease of $[^3H]DAGO$ binding was potentiated by sulpiride and pimozide in the chronic morphine treatment (5 mg/kg and 20 mg/kg). The decrease of $[^3H]DPDPE$ binding was inhibited by chlorpromazine, thioridazine, haloperidol, sulpiride, and pimozide in chronic morphine treatment (5 mg/kg and 20 mg/kg). The decrease of $[^3H]\;DPN$ binding was significantly inhibited by chlorpromazine, thioridazine, sulpiride, and pimozide in chronic morphine 20 mg/kg treatment. $[^3H]\;DPN$ binding on the neuroleptics was antagonized by naloxone pretreatment in chronic morphine 20 mg/kg treatment. These findings suggest that neuroleptics influence opposing tonically active on the ${\delta},\;and\;{\kappa}$ opioid receptor compared with ${\mu}$ opioid receptor in the chronic morphine treated mouse striatum.

  • PDF

Antinarcotic Effect of Ginseng (인삼의 마약중독 해독효과)

  • Oh, Sei-Kwan
    • Journal of Ginseng Research
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Ginseng saponin has been shown to inhibit the development of dependence on morphine, cocaine, methamphetamine, but the antinarcotics effects of ginseng on nalbuphine remains still largely unknown. Ginseng administration attenuated the naloxone-induced jumping behavior on nalbuphine dependent mice. The development of morphine dependence was mediated through ${\mu}-opioid$ receptor, however, development of nalbuphine dependence was mediated through ${\kappa}-opioid$ receptor. However, it was found that the efficacy of analgesic antagonism of GTS was mediated through the serotonergic mechanism, not mediated through the opioid receptor. In addition, ginseng administration modulated cellular signal transduction in the brain. The increased NMDA receptor subunit (NR1, pNR1), phosphate extracellular signal regulated protein kinase (pERK), phosphate cAMP response element binding protein (pCREB) expression by nalbuphine was decreased by the administration of ginseng powder in cortex, hippocampus, striatum of rat brain. These results suggest that ginseng could be one of the targets of antinarcotic therapies to reduce the development of tolerance and dependence on nalbuphine as well as morphine.

Study on Peripheral Mechanism and Opioid Receptors Implicated in Electroacupunture-induced Inbibition of Chronic Pain (만성통증을 억제하는 전침효과의 말초성 기전과 아편양물질수용기에 관한 연구)

  • 신홍기;이서은;박동석
    • The Journal of Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.108-117
    • /
    • 2003
  • Objective : The central opioid mechanism of acupuncture analgesia has been fairly well documented in acute behavioral experiments, but little electrophysiological study has been performed on the peripheral mechanism and subtypes of opioid receptors responsible for acupuncture-induced antinociception in chronic animal models. In the present electrophysiological experiment, we studied the peripheral mechanism and opioid receptor subtypes which Were implicated in electroacupuncture-induced antinociception in the rat with chronic inflammatory and neurogenic pain. Methods : In the rat with complete Freund's adjuvant-induced inflammation and spinal nerve injury, dorsal horn cell responses to afferent C fiber stimulation were recorded before and after electroacupuncture (EA) stimulation applied to the contralateral Zusanli point for 30 minutes. Also studied Were the effects of specific opioid receptor antagonists and naloxone methiodide, which can not cross the blood-brain barrier, on EA-induced inhibitory action. Results : EA-induced inhibitory action was significantly attenuated by naloxone methiodide, suggesting that EA-induced inhibition was mediated through peripheral mechanism. Pretreatment, but not posttreatment of naltrexone and spinal application significantly blocked EA-induced inhibitory actions. In inflammatory and neurogenic pain models, ${\mu}-$ and ${\delta}-opioid$ receptor antagonists (${\beta}-funaltrexamine$ & naltrindole) significantly reduced EA-induced inhibitory action, but ${\kappa}-opioid$ receptor antagonist had weak inhibitory effect on EA-induced antinociception. Conclusion : These results suggest that 2Hz EA-stimulation induced antinoeiceptive action is mediated through peripheral as well as central mechanism, and mainly through ${\mu}-$ and ${\delta}-opioid$ receptors.

  • PDF

The Changes of Cyclic AMP Content by Opiates in Chronic Haloperidol Treated Mouse Striatum (Haloperidol 장기 투여된 Mouse Striatum에서 cAMP양에 미치는 Opiates의 영향)

  • Kim, Soo-Kyung
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.11-18
    • /
    • 1994
  • Cyclic adenosine 3'5'-monophosphate (cyclic AMP) has been frequently accepted as an intracellular messenger for receptor-mediated action of opioids. In this experiment, it was designed to determine the interaction of dopaminergic and opioidergic system in the mouse striatum in normal and chronic haloperidol treated groups. Haloperidol 750ug/kg I.P. for 10 days was performed for dopamine denervation. The morphine, DAGO, DPDPE, and U5O,488H inhibited the increase of haloperidol-induced cyclic AMP content in chronic haloperidol treated mouse striatum. The inhibition of DAGO and DPDPE showed significant increase compared to normal mouse striatum. Naloxone showed antagonistic effect on the morphine and U5O,488H in chronic haloperidol treated group, and showed antagonistic effect on morphine, DAGO, DPDPE, and U5O, 488H in normal mouse striatum. These findings support that there is a functional interrelationship of dopaminergic and opioidergic pathway in the striatum. This result provides an evidence that following destruction of striatal dopaminergic neuron, there are some changes of cAMP content on the ${\mu},\;{\gamma},\;and\;{\kappa}$ opioid receptor, but the ${\kappa}$ opioid receptor still has its function.

  • PDF

Roles of Opioid Receptor Subtype in the Spinal Antinociception of Selective Cyclooxygenase 2 Inhibitor

  • Choi, Cheol-Hun;Kim, Woong-Mo;Lee, Hyung-Gon;Jeong, Cheol-Won;Kim, Chang-Mo;Lee, Seong-Heon;Yoon, Myung-Ha
    • The Korean Journal of Pain
    • /
    • v.23 no.4
    • /
    • pp.236-241
    • /
    • 2010
  • Background: Selective inhibitors of cycloosygenase (COX)-2 are commonly used analgesics in various pain conditions. Although their actions are largely thought to be mediated by the blockade of prostaglandin (PG) biosynthesis, evidences suggesting endogenous opioid peptide link in spinal antinociception of COX inhibitor have been reported. We investigated the roles of opioid receptor subtypes in the spinal antionociception of selective COX-2 inhibitor. Methods: To examine the antionociception of a selective COX-2 inhibitor, DUP-697 was delivered through an intrathecal catheter, 10 minutes before the formalin test in male Sprague-Dawley rats. Then, the effect of intrathecal pretreatment with CTOP, naltrindole and GNTI, which are ${\mu}$, $\delta$, and k opioid receptor antagonist, respectively, on the analgesia induced by DUP-697 was assessed. Results: Intrathecal DUP-697 reduced the flinching response evoked by formalin injection during phase 1 and 2 Naltrindole and GNTI attenuated the antinociceptive effect of intrathecal DUP-697 during both phases of the formalin test, CTOP reversed the antinociception of DUP-697 during phase 2, but not during phase 1, Conclusions: Intrathecal DUP-697, a selective COX-2 inhibitor, effectively relieved inflammatory pain in rats. The $\delta$ and $\kappa$ opioid receptors are involved in the activity of COX-2 inhibitor on the facilitated state as well as acute pain at the spinal level, whereas the ${\mu}$ opioid receptor is related only to facilitated pain.

Medial prefrontal cortex nitric oxide modulates neuropathic pain behavior through mu opioid receptors in rats

  • Raisian, Dorsa;Erfanparast, Amir;Tamaddonfard, Esmaeal;Soltanalinejad-Taghiabad, Farhad
    • The Korean Journal of Pain
    • /
    • v.35 no.4
    • /
    • pp.413-422
    • /
    • 2022
  • Background: The neocortex, including the medial prefrontal cortex (mPFC), contains many neurons expressing nitric oxide synthase (NOS). In addition, increasing evidence shows that the nitric oxide (NO) and opioid systems interact in the brain. However, there have been no studies on the interaction of the opioid and NO systems in the mPFC. The objective of this study was to investigate the effects of administrating L-arginine (L-Arg, a precursor of NO) and N(gamma)-nitro-L-arginine methyl ester (L-NAME, an inhibitor of NOS) into the mPFC for neuropathic pain in rats. Also, we used selective opioid receptor antagonists to clarify the possible participation of the opioid mechanism. Methods: Complete transection of the peroneal and tibial branches of the sciatic nerve was applied to induce neuropathic pain, and seven days later, the mPFC was cannulated bilaterally. The paw withdrawal threshold fifty percent (50% PWT) was recorded on the 14th day. Results: Microinjection of L-Arg (2.87, 11.5 and 45.92 nmol per 0.25 µL) increased 50% PWT. L-NAME (17.15 nmol per 0.25 µL) and naloxonazine (an antagonist of mu opioid receptors, 1.54 nmol per 0.25 µL) inhibited anti-allodynia induced by L-Arg (45.92 nmol per 0.25 µL). Naltrindole (a delta opioid receptor antagonist, 2.45 nmol per 0.25 µL) and nor-binaltorphimine (a kappa opioid receptor antagonist, 1.36 nmol per 0.25 µL) were unable to prevent L-Arg (45.92 nmol per 0.25 µL)-induced antiallodynia. Conclusions: Our results indicate that the NO system in the mPFC regulates neuropathic pain. Mu opioid receptors of this area might participate in pain relief caused by L-Arg.