LIGAND BINDING CHRATERISTICS OF κ_2 - OPIOID RECEPTOR AND ITS ROLE IN REGULATION OF [3 H]HISTAMINE RELEASE IN FRONTAL CORTEX OF THE RAT

Kee-Won Kim and Kyu-Park Cho Department of Pharmacology, Chonbuk National University Medical School, Chonju 560-182

It has been shown that there are several subtypes of κ opioid receptor. We have evaluated the properties of non- μ , non- δ binding of [$^3\text{H}]\text{DIP},$ a nonselective opioid antagonist, in rat cortex membranes. Binding to $\boldsymbol{\mu}$ and δ sites was inhibited by the use of an excess of competing selective (DAMGO, DPDPE) for these agonists)Ethylketocyclazocine(EKC) inhibited [³H]DIP binding with Ki of 70 nM. However, arylacetamides (U69593 and U50488H) gave little inhibition. Also, we have examined the opioid modulation of K+(30 mM)-induced histamine release in rat frontal cortex slices labeled with l-The [3H]histamine release from cortex slices was [3H]histidine. inhibited by EKC, a κ_1 -and κ_2 -agonist, in a concentration-dependent manner(10 to 10,000 nM). The IC₅₀ of EKC was 107 \pm 6 nM. However, the δ receptor selective agonists, DPDPE and deltorphine II, μ receptor agonists, DAMGO and TAPS, κ₁-agonists, U69593 and U50488H, and εagonist, \u03b3-endorphin, did not inhibit histamine release even in micromolar dose, indicating that $\mu,\,\delta$ or κ_1 receptors are not involved. The concentration-response curve of EKC was shifted to right in the presence of naloxone (300 nM), a µ preferential antagonist, norbinaltorphimine (300 nM), a κ_1 preferential antagonist and bremazocine(1 nM), a κ_1 -agonist and κ_2 -antagonist. These results suggest that κ_2 opioid receptor regulates histamine release in the frontal cortex of the rat. (This work is supported in part by Basic Medical Science Fund, Korea Research Foundation to KWK, 1993.)