• Title/Summary/Keyword: kappa coefficient

Search Result 243, Processing Time 0.024 seconds

Change Detection Using Image Differencing Method in Pyeongtaeg City (화상간(畵像間) 차이법(差異法)을 활용한 평택시 지역 지표면(地表面) 변화탐지(變化探知))

  • Rim, Sang-Kyu;Kim, Moo-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.3
    • /
    • pp.185-195
    • /
    • 2002
  • The purpose of this study is to evaluate and seek the best suitable band and threshold boundary level on the change detection of image differencing method using Landsat TM data(20 May 1987 and 20 May 1993) in Pyeongtaeg City. The change detection images differencing method were evaluated by using normal reference data with an optimal threshold level{$mean{\pm}(SD{\times}T$ value). The normal reference data consisted of positive change{change dark into light in image pattern, that is, it changed arable land(paddy, upland, forest and so on) to artificial area(buildings, vinyl-house and roads, etc)} and negative change(change light into dark in image pattern, that is, it changed artificial area into arable land). As the result, the kappa coefficients of visible bands(D1, D2 and D3) were higher than those of infrared bands(D4, D5 and D7), and than D1 image with 1.0 thresholding and normal reference data was a improved result in the land-surface change detection such as kappa coefficient : 68.4%, overall accuracy : 89.2%, negative change : 6.6%, positive change : 10.6%.

The Analysis of Evergreen Tree Area Using UAV-based Vegetation Index (UAV 기반 식생지수를 활용한 상록수 분포면적 분석)

  • Lee, Geun-Sang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • The decrease of green space according to the urbanization has caused many environmental problems as the destruction of habitat, air pollution, heat island effect. With interest growing in natural view recently, proper management of evergreen tree which is lived even the winter season has been on the rise importantly. This study analyzed the distribution area of evergreen tree using vegetation index based on unmanned aerial vehicle (UAV). Firstly, RGB and NIR+RG camera were loaded in fixed-wing UAV and image mosaic was achieved using GCPs based on Pix4d SW. And normalized differences vegetation index (NDVI) and soil adjusted vegetation index (SAVI) was calculated by band math function from acquired ortho mosaic image. validation points were applied to evaluate accuracy of the distribution of evergreen tree for each range value and analysis showed that kappa coefficient marked the highest as 0.822 and 0.816 respectively in "NDVI > 0.5" and "SAVI > 0.7". The area of evergreen tree in "NDVI > 0.5" and "SAVI > 0.7" was $11,824m^2$ and $15,648m^2$ respectively, that was ratio of 4.8% and 6.3% compared to total area. It was judged that UAV could supply the latest and high resolution information to vegetation works as urban environment, air pollution, climate change, and heat island effect.

Drone-based Vegetation Index Analysis Considering Vegetation Vitality (식생 활력도를 고려한 드론 기반의 식생지수 분석)

  • CHO, Sang-Ho;LEE, Geun-Sang;HWANG, Jee-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.21-35
    • /
    • 2020
  • Vegetation information is a very important factor used in various fields such as urban planning, landscaping, water resources, and the environment. Vegetation varies according to canopy density or chlorophyll content, but vegetation vitality is not considered when classifying vegetation areas in previous studies. In this study, in order to satisfy various applied studies, a study was conducted to set a threshold value of vegetation index considering vegetation vitality. First, an eBee fixed-wing drone was equipped with a multi-spectral camera to construct optical and near-infrared orthomosaic images. Then, GIS calculation was performed for each orthomosaic image to calculate the NDVI, GNDVI, SAVI, and MSAVI vegetation index. In addition, the vegetation position of the target site was investigated through VRS survey, and the accuracy of each vegetation index was evaluated using vegetation vitality. As a result, the scenario in which the vegetation vitality point was selected as the vegetation area was higher in the classification accuracy of the vegetation index than the scenario in which the vegetation vitality point was slightly insufficient. In addition, the Kappa coefficient for each vegetation index calculated by overlapping with each site survey point was used to select the best threshold value of vegetation index for classifying vegetation by scenario. Therefore, the evaluation of vegetation index accuracy considering the vegetation vitality suggested in this study is expected to provide useful information for decision-making support in various business fields such as city planning in the future.

Assessment of Posterior Globe Flattening: Two-Dimensional versus Three-Dimensional T2-Weighted Imaging

  • Ann, Jun Hyung;Kim, Eung Yeop
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.3
    • /
    • pp.178-185
    • /
    • 2015
  • Purpose: To compare the frequency of posterior globe flattening between two-dimensional T2-weighted imaging (2D T2WI) and three-dimensional (3D T2WI). Materials and Methods: Sixty-nine patients (31 female; mean age, 44.4 years) who had undergone both 5-mm axial T2WI and sagittal 3D 1-mm isovoxel T2WI of the whole brain for evaluation of various diseases (headache [n = 30], large hemorrhage [n = 19], large tumor or leptomeningeal tumor spread [n = 15], large infarct [n = 3], and bacterial meningitis [n = 2]) were used in this study. Two radiologists independently reviewed both sets of images at separate sessions. Axial T2WI and multi-planar imaging of 3D T2WI were visually assessed for the presence of globe flattening. The optic nerve sheath diameter (ONSD) was measured at a location 4 mm posterior to each globe on oblique coronal imaging reformatted from 3D T2WI. Results: There were significantly more globes showing posterior flattening on 3D T2WI (105/138 [76.1%]) than on 2D T2WI (27/138 [19.6%], P = 0.001). Inter-observer agreement was excellent for both 2D T2WI and 3D T2WI (Cohen's kappa = 0.928 and 0.962, respectively). Intra-class correlation coefficient for the ONSD was almost perfect (Cohen's kappa = 0.839). The globes with posterior flattening had significantly larger ONSD than those without on both 2D and 3D T2WI (P < 0.001; $6.14mm{\pm}0.44$ vs. $5.74mm{\pm}0.44$ on 2D T2WI; $5.90mm{\pm}0.47$ vs. $5.56mm{\pm}0.34$ on 3D T2WI). Optic nerve protrusion was significantly more frequent on reformatted 1-mm 3D T2WI than on 5-mm 2D T2WI (8 out of 138 globes on 3D T2WI versus one on 2D T2WI; P = 0.018). Conclusion: Posterior globe flattening is more frequently observed on 3D T2WI than on 2D T2WI in patients suspected of having increased intracranial pressure. The globes with posterior flattening have significantly larger ONSD than those without.

Study on Standardization of Korean Version of Psychiatric Diagnostic Screening Questionnaire(K-PDSQ) (한국판 정신장애 진단 선별 질문지의 표준화 연구)

  • Choi, Hyeong-Keun;Jung, Sung-Won;Jo, Hyun-Ju;Kim, Jeong-Bum;Jung, Chul-Ho
    • Anxiety and mood
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 2013
  • Objective : The PDSQ is a brief and psychometrically strong self-report scale designed to screen for common DSM-IV Axis I disorders in clinical settings. In this study, the K-PDSQ was compared with the M.I.N.I.-Plus (Mini-International Neuropsychiatric Interview-Plus) for diagnostic validity and availability of the K-PDSQ as a part of standardization of the K-PDSQ. Methods : The 640 patients were evaluated with the K-PDSQ and the M.I.N.I.-Plus. Diagnosing with the M.I.N.I.-Plus, the diagnostic correspondence, administering time, sensitivity, specificity, ROC curve, and AUC of the K-PDSQ were evaluated. Results : For the diagnostic correspondence of the K-PDSQ, Cohen's kappa coefficient was .66 between the K-PDSQ and the M.I.N.I.-Plus. The administering time of the K-PDSQ was $18.2{\pm}11.80$ minutes. Both sensitivity and specificity of the K-PDSQ were higher: the mean sensitivity across 10 subscales of K-PDSQ was 86%; the mean specificity was 84%. All AUCs of each subscale were above .80, which were statistically significant. Conclusion : The K-PDSQ is valid and available as a diagnostic screening tool. It will be widely used in clinical settings for screening DSM-IV Axis I diagnosis because of its simplicity and high reliability.

Generation of Large-scale Map of Surface Sedimentary Facies in Intertidal Zone by Using UAV Data and Object-based Image Analysis (OBIA) (UAV 자료와 객체기반영상분석을 활용한 대축척 갯벌 표층 퇴적상 분류도 작성)

  • Kim, Kye-Lim;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.277-292
    • /
    • 2020
  • The purpose of this study is to propose the possibility of precise surface sedimentary facies classification and a more accurate classification method by generating the large-scale map of surface sedimentary facies based on UAV data and object-based image analysis (OBIA) for Hwang-do tidal flat in Cheonsu bay. The very high resolution UAV data extracted factors that affect the classification of surface sedimentary facies, such as RGB ortho imagery, Digital elevation model (DEM), and tidal channel density, and analyzed the principal components of surface sedimentary facies through statistical analysis methods. Based on principal components, input data to be used for classification of surface sedimentary facies were divided into three cases such as (1) visible band spectrum, (2) topographical elevation and tidal channel density, (3) visible band spectrum and topographical elevation, tidal channel density. The object-based image analysis classification method was applied to map the classification of surface sedimentary facies according to conditions of input data. The surface sedimentary facies could be classified into a total of six sedimentary facies following the folk classification criteria. In addition, the use of visible band spectrum, topographical elevation, and tidal channel density enabled the most effective classification of surface sedimentary facies with a total accuracy of 63.04% and the Kappa coefficient of 0.54.

Prognostic Impact of Charlson Comorbidity Index Obtained from Medical Records and Claims Data on 1-year Mortality and Length of Stay in Gastric Cancer Patients (위암환자에서 의무기록과 행정자료를 활용한 Charlson Comorbidity Index의 1년 이내 사망 및 재원일수 예측력 연구)

  • Kyung, Min-Ho;Yoon, Seok-Jun;Ahn, Hyeong-Sik;Hwang, Se-Min;Seo, Hyun-Ju;Kim, Kyoung-Hoon;Park, Hyeung-Keun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.42 no.2
    • /
    • pp.117-122
    • /
    • 2009
  • Objectives : We tried to evaluate the agreement of the Charlson comorbidity index values(CCI) obtained from different sources(medical records and National Health Insurance claims data) for gastric cancer patients. We also attempted to assess the prognostic value of these data for predicting 1-year mortality and length of the hospital stay(length of stay). Methods : Medical records of 284 gastric cancer patients were reviewed, and their National Health Insurance claims data and death certificates were also investigated. To evaluate agreement, the kappa coefficient was tested. Multiple logistic regression analysis and multiple linear regression analysis were performed to evaluate and compare the prognostic power for predicting 1 year mortality and length of stay. Results : The CCI values for each comorbid condition obtained from 2 different data sources appeared to poorly agree(kappa: 0.00-0.59). It was appeared that the CCI values based on both sources were not valid prognostic indicators of 1-year mortality. Only medical record-based CCI was a valid prognostic indicator of length of stay, even after adjustment of covariables($\beta$ = 0.112, 95% CI = [0.017-1.267]). Conclusions : There was a discrepancy between the data sources with regard to the value of CCI both for the prognostic power and its direction. Therefore, assuming that medical records are the gold standard for the source for CCI measurement, claims data is not an appropriate source for determining the CCI, at least for gastric cancer.

Applicability of Image Classification Using Deep Learning in Small Area : Case of Agricultural Lands Using UAV Image (딥러닝을 이용한 소규모 지역의 영상분류 적용성 분석 : UAV 영상을 이용한 농경지를 대상으로)

  • Choi, Seok-Keun;Lee, Soung-Ki;Kang, Yeon-Bin;Seong, Seon-Kyeong;Choi, Do-Yeon;Kim, Gwang-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Recently, high-resolution images can be easily acquired using UAV (Unmanned Aerial Vehicle), so that it is possible to produce small area observation and spatial information at low cost. In particular, research on the generation of cover maps in crop production areas is being actively conducted for monitoring the agricultural environment. As a result of comparing classification performance by applying RF(Random Forest), SVM(Support Vector Machine) and CNN(Convolutional Neural Network), deep learning classification method has many advantages in image classification. In particular, land cover classification using satellite images has the advantage of accuracy and time of classification using satellite image data set and pre-trained parameters. However, UAV images have different characteristics such as satellite images and spatial resolution, which makes it difficult to apply them. In order to solve this problem, we conducted a study on the application of deep learning algorithms that can be used for analyzing agricultural lands where UAV data sets and small-scale composite cover exist in Korea. In this study, we applied DeepLab V3 +, FC-DenseNet (Fully Convolutional DenseNets) and FRRN-B (Full-Resolution Residual Networks), the semantic image classification of the state-of-art algorithm, to UAV data set. As a result, DeepLab V3 + and FC-DenseNet have an overall accuracy of 97% and a Kappa coefficient of 0.92, which is higher than the conventional classification. The applicability of the cover classification using UAV images of small areas is shown.

Improving of land-cover map using IKONOS image data (IKONOS 영상자료를 이용한 토지피복도 개선)

  • 장동호;김만규
    • Spatial Information Research
    • /
    • v.11 no.2
    • /
    • pp.101-117
    • /
    • 2003
  • High resolution satellite image analysis has been recognized as an effective technique for monitoring local land-cover and atmospheric changes. In this study, a new high resolution map for land-cover was generated using both high-resolution IKONOS image and conventional land-use mapping. Fuzzy classification method was applied to classify land-cover, with minimum operator used as a tool for joint membership functions. In separateness analysis, the values were not great for all bands due to discrepancies in spectral reflectance by seasonal variation. The land-cover map generated in this study revealed that conifer forests and farm land in the ground and tidal flat and beach in the ocean were highly changeable. The kappa coefficient was 0.94% and the overall accuracy of classification was 95.0%, thus suggesting a overall high classification accuracy. Accuracy of classification in each class was generally over 90%, whereas low classification accuracy was obtained for classes of mixed forest, river and reservoir. This may be a result of the changes in classification, e.g. reclassification of paddy field as water area after water storage or mixed use of several classification class due to similar spectral patterns. Seasonal factors should be considered to achieve higher accuracy in classification class. In conclusion, firstly, IKONOS image are used to generated a new improved high resolution land-cover map. Secondly, IKONOS image could serve as useful complementary data for decision making when combined with GIS spatial data to produce land-use map.

  • PDF

Data Bias Optimization based Association Reasoning Model for Road Risk Detection (도로 위험 탐지를 위한 데이터 편향성 최적화 기반 연관 추론 모델)

  • Ryu, Seong-Eun;Kim, Hyun-Jin;Koo, Byung-Kook;Kwon, Hye-Jeong;Park, Roy C.;Chung, Kyungyong
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.1-6
    • /
    • 2020
  • In this study, we propose an association inference model based on data bias optimization for road hazard detection. This is a mining model based on association analysis to collect user's personal characteristics and surrounding environment data and provide traffic accident prevention services. This creates transaction data composed of various context variables. Based on the generated information, a meaningful correlation of variables in each transaction is derived through correlation pattern analysis. Considering the bias of classified categorical data, pruning is performed with optimized support and reliability values. Based on the extracted high-level association rules, a risk detection model for personal characteristics and driving road conditions is provided to users. This enables traffic services that overcome the data bias problem and prevent potential road accidents by considering the association between data. In the performance evaluation, the proposed method is excellently evaluated as 0.778 in accuracy and 0.743 in the Kappa coefficient.