• 제목/요약/키워드: kappa chain

검색결과 200건 처리시간 0.027초

청피의 항염증효과 (Effects of Citri Reticulatae Viride Pericarpium on 4-Hydroxynonenal-Induced Inflammation in PC12 Cells)

  • 예영준;김연섭;강미숙
    • 한방비만학회지
    • /
    • 제16권2호
    • /
    • pp.79-84
    • /
    • 2016
  • Objectives: The purpose of this study was to observe the effects of Citri Reticulatae Viride Pericarpium (CP) on 4-Hydroxynonenal (4-HNE)-induced inflammation in PC12 cells. Methods: 4-HNE was treated in PC12 cell to cause inflammatory response, and then treated with CP water extract at 25, 50, and $100{\mu}g/ml$. The phosphorylation of Jun N-terminal kinase (JNK) and the expression of $NF-{\kappa}B$ in PC12 cells were determined by Western blot, respectively. Results: The phosphorylation of JNK was significantly decreased in 4-HNE-stimulated PC12 cell by the treatment of CP extract at $25{\mu}g/ml$. The 4-HNE-induced expression of nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) p65 in nuclear of the cells was significantly decreased in PC12 cell by treatment with CP extract at 25, 50, and $100{\mu}g/ml$. Conclusions: These results suggest that CP water extract has an anti-inflammatory activity through suppressing the JNK and $NF-{\kappa}B$ activation.

A Medium-Chain Fatty Acid, Capric Acid, Inhibits RANKL-Induced Osteoclast Differentiation via the Suppression of NF-κB Signaling and Blocks Cytoskeletal Organization and Survival in Mature Osteoclasts

  • Kim, Hyun-Ju;Yoon, Hye-Jin;Kim, Shin-Yoon;Yoon, Young-Ran
    • Molecules and Cells
    • /
    • 제37권8호
    • /
    • pp.598-604
    • /
    • 2014
  • Fatty acids, important components of a normal diet, have been reported to play a role in bone metabolism. Osteoclasts are bone-resorbing cells that are responsible for many bone-destructive diseases such as osteoporosis. In this study, we investigated the impact of a medium-chain fatty acid, capric acid, on the osteoclast differentiation, function, and survival induced by receptor activator of NF-${\kappa}B$ ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Capric acid inhibited RANKL-mediated osteoclastogenesis in bone marrow-derived macrophages and suppressed RANKL-induced $I{\kappa}B{\alpha}$ phosphorylation, p65 nuclear translocation, and NF-${\kappa}B$ transcriptional activity. Capric acid further blocked the RANKL-stimulated activation of ERK without affecting JNK or p38. The induction of NFATc1 in response to RANKL was also attenuated by capric acid. In addition, capric acid abrogated M-CSF and RANKL-mediated cytoskeleton reorganization, which is crucial for the efficient bone resorption of osteoclasts. Capric acid also increased apoptosis in mature osteoclasts through the induction of Bim expression and the suppression of ERK activation by M-CSF. Together, our results reveal that capric acid has inhibitory effects on osteoclast development. We therefore suggest that capric acid may have potential therapeutic implications for the treatment of bone resorption-associated disorders.

The Inhibitory Effect of Lycii Fructus on LPS-stimulated NF-${\kappa}B$ Activation and iNOS Expression in RAW 264.7 Macrophages

  • Kim, Beum-Seuk;Song, Yun-Kyung;Lim, Hyung-Ho
    • 대한한의학회지
    • /
    • 제29권1호
    • /
    • pp.47-59
    • /
    • 2008
  • Objective : Anti-inflammatory effects of the extract of Lycii Fructus on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells were investigated. Method : In order to assess the cytotoxic effect of Lycii Fructus on the raw 264.7 macrophages 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay was performed. Reverse transcription-polymerase chain reaction(RT-PCR) analysis of the mRNA levels of tumor necrosis factor-$\alpha$(TNF-$\alpha$) and inducible nitric oxide synthase(iNOS) was performed in order to provide an estimate of the relative level of expression of these genes. The protein level of the inhibitor of nuclear factor-${\kappa}B(I{\kappa}B)$ and nuclear factor-${\kappa}B$(NF-${\kappa}B$) activity was investigated by Western blot assay. NO production was investigated by NO detection. Result : Lycii Fructus suppressed NO production by inhibiting the LPS-induced expressions of iNOS and TNF-$^-\alpha$ mRNA and iNOS protein in RAW 264.7 macrophage cells. Also, Lycii Fructus suppressed activation of NF-${\kappa}B$ in the nucleus. Conclusion : These results show that the extract of Lycii Fructus has anti-inflammatory effect probably by suppressing iNOS expressions through the down-regulation of NF-${\kappa}B$ binding activity.

  • PDF

Apigenin Inhibits Tumor Necrosis Factor-α-Induced Production and Gene Expression of Mucin through Regulating Nuclear Factor-Kappa B Signaling Pathway in Airway Epithelial Cells

  • Seo, Hyo-Seok;Sikder, Mohamed Asaduzzaman;Lee, Hyun Jae;Ryu, Jiho;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • 제22권6호
    • /
    • pp.525-531
    • /
    • 2014
  • In the present study, we investigated whether apigenin significantly affects tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced production and gene expression of MUC5AC mucin in airway epithelial cells. Confluent NCI-H292 cells were pretreated with apigenin for 30 min and then stimulated with TNF-${\alpha}$ for 24 h or the indicated periods. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Apigenin significantly inhibited MUC5AC mucin production and down-regulated MUC5AC gene expression induced by TNF-${\alpha}$ in NCI-H292 cells. To elucidate the action mechanism of apigenin, effect of apigenin on TNF-${\alpha}$-induced nuclear factor kappa B (NF-${\kappa}B$) signaling pathway was also investigated by western blot analysis. Apigenin inhibited NF-${\kappa}B$ activation induced by TNF-${\alpha}$. Inhibition of inhibitory kappa B kinase (IKK) by apigenin led to the suppression of inhibitory kappa B alpha ($I{\kappa}B{\alpha}$) phosphorylation and degradation, p65 nuclear translocation. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. Apigenin also has an influence on upstream signaling of IKK because it inhibited the expression of adaptor protein, receptor interacting protein 1 (RIP1). These results suggest that apigenin can regulate the production and gene expression of mucin through regulating NF-${\kappa}B$ signaling pathway in airway epithelial cells.

홍삼 비사포닌 분획의 단핵세포 분화와 염증반응에 대한 억제효과 (Non-saponin fraction of red ginseng inhibits monocyte-to-macrophage differentiation and inflammatory responses in vitro)

  • 강보빈;김채영;황지수;최현선
    • 한국식품과학회지
    • /
    • 제51권1호
    • /
    • pp.70-80
    • /
    • 2019
  • 본 연구에서는 홍삼 비사포닌 분획(NSF)의 항 염증 효과를 마우스 대식세포와 인간유래 단핵세포에서 확인하였다. NSF는 마우스 대식세포에서 LPS로 유도된 NO, iNOS 그리고 COX-2의 양 뿐만 아니라 IL-6, $TNF-{\alpha}$, MCP-1과 같은 염증성 싸이토카인의 생성량을 유의적으로 감소시켰다. 인간 유래 단핵세포에서는 PMA에 의해 유도되는 대식세포로의 분화를 효과적으로 억제하면서 분화인자인 $CD11{\beta}$와 CD36의 발현을 유의적으로 감소시켰다. 마우스 대식세포에서와 마찬가지로 염증성 싸이토카인들의 생성량 또한 감소하였는데, 이러한 NSF의 항 염증 효과는 두 전사인자의 조절작용에 의한 것으로 사료된다. 즉 NSF는 $NF-{\kappa}B$의 핵으로 이동을 감소시킴으로써 전사활성을 억제하여 염증성 싸이토카인들의 발현을 저해하고 이와 반대로 Nrf2의 발현과 핵으로의 이동을 증가시켜 항산화 효소이면서 항 염증 작용을 나타내는 HO-1의 발현을 촉진하는 것으로 관찰되었다. 따라서 NSF는 $NF-{\kappa}B$와 Nrf2의 두 가지 신호전달체계를 조절함으로써 항 염증 작용을 나타냈으며 이를 홍삼 NSF의 항 염증 기작으로 보고하는 바이다.

Effects of a Proteasome Inhibitor on Cardiomyocytes in a Pressure-Overload Hypertrophy Rat Model: An Animal Study

  • Kim, In-Sub;Jo, Won-Min
    • Journal of Chest Surgery
    • /
    • 제50권3호
    • /
    • pp.144-152
    • /
    • 2017
  • Background: The ubiquitin-proteasome system (UPS) is an important pathway of proteolysis in pathologic hypertrophic cardiomyocytes. We hypothesize that MG132, a proteasome inhibitor, might prevent hypertrophic cardiomyopathy (CMP) by blocking the UPS. Nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) and androgen receptor (AR) have been reported to be mediators of CMP and heart failure. This study drew upon pathophysiologic studies and the analysis of $NF-{\kappa}B$ and AR to assess the cardioprotective effects of MG132 in a left ventricular hypertrophy (LVH) rat model. Methods: We constructed a transverse aortic constriction (TAC)-induced LVH rat model with 3 groups: sham (TAC-sham, n=10), control (TAC-cont, n=10), and MG132 administration (TAC-MG132, n=10). MG-132 (0.1 mg/kg) was injected for 4 weeks in the TAC-MG132 group. Pathophysiologic evaluations were performed and the expression of AR and $NF-{\kappa}B$ was measured in the left ventricle. Results: Fibrosis was prevalent in the pathologic examination of the TAC-cont model, and it was reduced in the TAC-MG132 group, although not significantly. Less expression of AR, but not $NF-{\kappa}B$, was found in the TAC-MG132 group than in the TAC-cont group (p<0.05). Conclusion: MG-132 was found to suppress AR in the TAC-CMP model by blocking the UPS, which reduced fibrosis. However, $NF-{\kappa}B$ expression levels were not related to UPS function.

다당류 및 TGase를 활용한 동결 무지개송어육(Oncorhynchus mykiss)의 물성개선 및 저장성 향상 효과 (Effect of Texture Improvement and Shelf Life Extension of Frozen Rainbow Trout Oncorhynchus mykiss Treated with TGase and Polysaccharides)

  • 이종봉;박혜민;안병규;이우진;인정진;한형구;손승아;배연주;심길보
    • 한국수산과학회지
    • /
    • 제56권4호
    • /
    • pp.505-511
    • /
    • 2023
  • This study investigated the effect of transglutaminase (TGase) and polysaccharide kappa carrageenan on the texture, chemical, and microbiological qualities of refrigerated unmarketable rainbow trout Oncorhynchus mykiss. Gel strength increased substantially in TGase-treated samples, and was adding kappa carrageenan resulted in no significant difference. SDS-PAGE results confirmed that the myosin heavy chain band with a molecular weight of 205-250 kDa was weakened in trout meat treated with 1% TGase, which led to cross-linking reactions between proteins. The volatile basic nitrogen (VBN) increased in all samples during storage at 4℃ for 10 days; however, the samples treated with 0.5% and 1% kappa carrageenan had the lowest VBN. The viable cell count increased in all samples treated with TGase and kappa carrageenan; however, an increase in TGase enzyme and kappa carrageenan concentration successfully hindered total bacteria growth. Thus, adding 1% TGase and 1% kappa carrageenan to refrigerated unmarketable rainbow trout formulations can optimize quality characteristics.

Oleanane-triterpenoids from Panax stipuleanatus inhibit NF-κB

  • Liang, Chun;Ding, Yan;Song, Seok Bean;Kim, Jeong Ah;Nguyen, Manh Cuong;Ma, Jin Yeul;Kim, Young Ho
    • Journal of Ginseng Research
    • /
    • 제37권1호
    • /
    • pp.74-79
    • /
    • 2013
  • In continuation of our research to find biological components from Panax stipuleanatus, four oleanane-type triterpenes (12 to 15) were isolated successively. Fifteen oleanane-type saponins (1 to 15) were evaluated for nuclear factor (NF)-${\kappa}B$ activity using a luciferase reporter gene assay in HepG2 cells. Compounds 6 to 11 inhibited NF-${\kappa}B$, with $IC_{50}$ values between 3.1 to 18.9 ${\mu}M$. The effects on inducible nitric oxide synthase and cyclooxygenase-2 by compounds 8, 10, and 11 were also examined using reverse transcription-polymerase chain reaction. Three compounds (8, 10, and 11) inhibited NF-${\kappa}B$ activity by reducing the concentration of inflammatory factors in HepG2 cells.

Leaves of Raphanus sativus L. Shows Anti-Inflammatory Activity in LPS-Stimulated Macrophages via Suppression of COX-2 and iNOS Expression.

  • Park, Hye-Jin;Song, Minjung
    • Preventive Nutrition and Food Science
    • /
    • 제22권1호
    • /
    • pp.50-55
    • /
    • 2017
  • Raphanus sativus L. (RS) is a cruciferous vegetable that is widely consumed in Korea. The anticancer activity of leaves of RS (RSL) extract has been investigated; however, no studies focused on its anti-inflammatory effects. Therefore, the aim of the current study was to evaluate the anti-inflammatory effects of RSL extract. In brief, RSL powder was fractionated into n-hexane, chloroform, ethyl acetate, n-butanol, and water-soluble fractions. Lipopolysaccharide (LPS)-stimulated RAW264.7 cells were treated with each fraction for initial screening. It was found that the chloroform fraction significantly inhibited nitric oxide release in LPS-stimulated RAW264.7 cells with a half maximal inhibitory concentration value of $196{\mu}g/mL$. In addition, the mRNA and protein expression levels of inducible nitric oxide synthase, measured using reverse transcriptase-polymerase chain reaction and western blotting, respectively, were reduced in a concentration-dependent manner. Moreover, the inflammatory cyclooxygenase-2 enzyme expression decreased. Furthermore, the expression of nuclear factor-kappa B ($NF-{\kappa}B$), the key regulator of the transcriptional activation of the inflammatory cytokine genes, was reduced by the RSL chloroform fraction. Therefore, the results of our study suggest that RSL exhibits anti-inflammatory effects in LPS-stimulated macrophages via $NF-{\kappa}B$ inactivation.

Sulforaphane Inhibits the Proliferation of the BIU87 Bladder Cancer Cell Line via IGFBP-3 Elevation

  • Dang, Ya-Mei;Huang, Gang;Chen, Yi-Rong;Dang, Zhong-Feng;Chen, Cheng;Liu, Feng-Lei;Guo, Ying-Fang;Xie, Xiao-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권4호
    • /
    • pp.1517-1520
    • /
    • 2014
  • Aim: To investigate effects of sulforaphane on the BIU87 cell line and underlying mechanisms involving IGFBP-3. Methods: Both BIU87 and IGFBP-3-silenced BIU87 cells were treated with sulforaphane. Cell proliferation was detected by MTT assay. Cell cycle and apoptosis were determined via flow cytometry. Quantitative polymerase chain reaction and Western blotting were applied to analyze the expression of IGFBP-3 and NF-${\kappa}B$ at both mRNA and protein levels. Results: Sulforaphane (80 ${\mu}M$) treatment could inhibit cell proliferation, inducing apoptosis and cell cycle arrest at G2/M phase. All these effects could be antagonized by IGFBP-3 silencing. Furthermore, sulforaphane (80 ${\mu}M$) could down-regulate NF-${\kappa}B$ expression while elevating that of IGFBP-3. Conclusions: Sulforaphane could suppress the proliferation of BIU87 cells via enhancing IGFBP-3 expression, which negatively regulating the NF-${\kappa}B$ signaling pathway.