• Title/Summary/Keyword: kaolinite/smectite

Search Result 85, Processing Time 0.023 seconds

Mineralogical Comparison between Asian Dust and Bedrock in Southern Mongolia (황사와 몽골 남부 기반암의 광물학적 비교)

  • Gi Young, Jeong
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.397-407
    • /
    • 2022
  • Mineralogical analysis of the bedrock of the Gobi Desert in southern Mongolia, the source of Asian dust, was conducted to trace the geological origin of the constituent minerals of Asian dust. The bedrock of the source of Asian dust consists of Paleozoic volcanics and volcaniclastic sedimentary rocks, Paleozoic granitic rocks, and Mesozoic sedimentary rocks. Paleozoic volcanics and volcaniclastic sediments lithified compactly, underwent greenschist metamorphism, and deformed to form mountain ranges. Mesozoic sedimentary rocks fill the basin between the mountain ranges of Paleozoic strata. In comparison to Paleozoic volcanic and sedimentary rocks, Mesozoic sedimentary rocks have lower contents of chlorite and plagioclase, but high contents of clay minerals including interstratified illite-smectite, smectite, and kaolinite. Paleozoic granites characteristically contain amphibole and biotite. Compared with the mineral composition of bedrock in source, Asian dust is a mixture of detrital particles originating from Paleozoic and Mesozoic bedrocks. However, the mineral composition of Mesozoic sedimentary rocks is closer to that of Asian dust. Less lithified Mesozoic sedimentary rocks easily disintegrated to form silty soils which are deflated to form Asian dust.

Wall Rock Alteration of the Haenam Pyrophyllite Deposit Related to Felsic Volcanism, Southern Korea (전남 해남지역 해남 납석광상의 변질작용 및 생성환경)

  • Moon, Hi-Soo;Jeong, Seung Woo;Song, Yungoo;Park, Young Surk
    • Economic and Environmental Geology
    • /
    • v.24 no.2
    • /
    • pp.83-96
    • /
    • 1991
  • Haenam pyrophyllite deposit occurred in the rhyolitic tuff of late Cretaceous age is located in the northern part of Haenam-gun, Jeonranam-do. The ore of the Haenam deposit is predominantly composed of pyrophyllite and illite accompanying such clay minerals as kaolinite, chlorite, and smectite. Pyrophyllite ore at the center of altered mass is often associated with kaolin minerals and high temperature minerals such as corundum, andalusite, and diaspore. On the basis of mineral assemblage the Haenam deposit can be devided into three alteration zones from the center to the margin of the deposit; the pyrophyllite zone, kaolinite zone, and illite zone. All alteration zones are associated with appreciable amounts of chalcedonic quartz. Those mineral assemblages indicate that hydrothermal solution which produced the Haenam deposit is strongly acidic solution with high silica and hydrogen activity and low $SO_4{^{2-}}$ activity. Discriminant analysis shows that $Na_2O$, $K_2O$, and $Al_2O$, of major elements are discriminant elements which classify alteration zones, while in case of trace elements Cr, Ni, and Sr turned out to be discriminant elements in this deposit. According to the mineral assemblage and illite geothermometry, pyrophyllite ore is considered to have been formed at about $240-290^{\circ}C$. K-Ar isotopic age for illite from this deposit indicates that it was formed at much the same age of later stage volcanics in the area, suggesting that the hydrothermal alteration of these deposits is associated with later volcanism of the area.

  • PDF

Geochemical Relationship Between Shore Sediments and Near Terrestrial geology in Byunsan-Taean Area, West Coast of Korea (한반도 서해안 변산-태안지역 연안 퇴적물과 육상지질과의 지화학적 상관관계)

  • Seo, Kyoung Won;Chi, Jeong Mahn;Jang, Yoon Ho
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.69-84
    • /
    • 1998
  • A geochemical study was carried out to define how marine shore sediments are related to their terrestrial source rocks in the region of Taean and Byunsan Peninsula, western Korea. The lithology of the coastal part of the study area is composed of Pre-Cambrian granite gneiss, schist, Jurassic terrestrial sedimentary rocks, and Cretaceous plutonic intrusives. Shore sediments are transported from three drainage tributaries. The sediments consist of quatrz with clay minerals, such as illite, kaolinite, smectite, chlorite. Heavy minerals include hematite, ilmenite, rare amount of zircon and apatite. Compared to those in coastal rocks, amount of heavy minerals in the sediments is considerably low. The low content of heavy minerals is thought to be attributed to the heavy mineral detainment in the river beds and influences of tidal currents which cause heavy minerals to accumulate in specific spots. Chemical composition of the major and trace elements, trace elements, and REE chondrite normalized pattern suggest that shore sediments transported from the corresponding drainage tributary show close mineralogical and geochemical relationships with the source rocks distributed in the Taean and Byunsan Peninsula.

  • PDF

Hydrothermal System of Diaspore-Dumortierite Minerals from Korea (다이야스포아-듀모오티어라이트 광물의 열수생성 과정)

  • Sang, Ki-Nam;Chung, Won-Woo;Lee, Yoon-Jong
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.439-446
    • /
    • 1996
  • Clay minerals are locally abundant in two hydrothermal areas at Tongnae-Yangsan and Miryang, Gyong-sang-namdo, Korea. This study is done to access the clay forming processes, particularly hydrothermal alteration. Pyrophyllite-kaolin in the Zone is accompanied by sericite, diaspore mixed-layer mica/smectite, alunite, dumortierite and silica minerals. Small nodular diaspore and disseminated fine radiac dumortierite are present in the pyrophyllite-kaoline deposits, the northemly trending belt of rhyolite flows and pyroclastic rock near the intruded by granite rock of Bulkusa Series. Hydrothermal action has formed many clay deposits with a zone containing over 80~90% pyrophyllite, kaolinite, muscovite with a little amount of dumortierite, boehmite, andalusite. Most of the clay deposits occur as irregular, lenticular, massive and assosiated dumortierite was found to coexist with clay deposits. Dumortierite data are as follows: lattice constant a=11.783, b=20.209, c=4,7001, axial ratio a:b:c=0.5835 : 1 : 0.2327, XRD $d{\AA}$ 2.549, 5.89, 5.09.

  • PDF

Feldspar Diagenesis and Reseuoir History of the Miocene Temblor Formation, Kettleman North Dome, California, U.S.A. (미국 캘리포니아주 케틀만 노스돔의 마이오세 템블러층에서 장석의 속성작용과 저류암의 발달사)

  • Lee Yong Il;Boles James R.
    • The Korean Journal of Petroleum Geology
    • /
    • v.3 no.1 s.4
    • /
    • pp.16-27
    • /
    • 1995
  • The Early Miocene Temblor Formation forms an important sandstone reservoir at Kettleman North Dome oil field, California. Sandstones are mostly arkosic in composition except deepest sandstones containing much volcanic rock fragments. Arranged in paragenetic sequence prior to feldspar alteration, the Temblor sandstones contain cements of early calcite, dolomite, quartz, albite, mixed-layer ohloriteismectite (C/S) and smectite, and anhydrite. Diagenetic changes associated with feldspar are albitization of plagioclase, late calcite and laumontite cementation and grain replacement, plagioclase dissolution, and kaolinite cementation. Plagioclase albitization and late calcite and laumontite cementation in Temblor sandstones occurred at the time of maximum burial with temperatures up to $130^{\circ}C$. Volcanic plagioclases were selectively albitized. Most diagenetic changes are interpreted to have occurred before the maior uplift which occurred within the last one million years ago. Since then to the time of hydrocarbon emplacement plagioclase dissolution and kaolinite cementation occurred. This reaction occurred in relatively closed system due to the occurrence of kaolinite next to the site of plagioclase dissolution. Unaltered part of volcanic plagioclase and plutonic plagioclase which escaped albitization during maximum burial were preferentially dissolved to make plagioclase porosity. Secondary porosity resulting from dissolution of plagioclase and carbonate and anhydrite cements was mainly produced by formation waters containing organic acids released during atagenesis of organic matter.

  • PDF

Clay Mineral Distribution and Characteristics in the Southeastern Yellow Sea Mud Deposits (황해 남동 이질대 퇴적물의 점토광물분포 및 특성)

  • Cho, Hyen-Goo;Kim, Soon-Oh;Yi, Hi-Il
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.163-173
    • /
    • 2012
  • In this study, we determined the relative clay mineral composition of 51 surface sediments from SEYSM (Southeastern Yellow Sea Mud) (northern part 25, southern part 26) and 30 river sediments inflow to Yellow Sea using the semi-quantitative X-ray diffraction analyses. In addition to we analyzed illite characteristics of the same samples. The clay-mineral assemblage is composed of illite (61~75%), chlorite (14~24%), kaolinite (9~14%), and smectite (1~7%), in decreasing order. The average composition of each clay mineral is not different from northern part to southern part of SEYSM except a little higher kaolinite and lower smectite content in northern part. Smectite content generally has reverse relationship with illite content. Mineralogical characteristics of illite such as illite crystallinity index also is not different between two areas and show very narrow range (0.18~0.24 ${\Delta}^{\circ}2{\theta}$). Our results reveal that clay mineral composition and illite characteristics are nearly the same between northern and southern part of SEYSM. Characteristics of surface sediments in SEYSM is closer to Korean river sediments than Chinese Hanghe sediments, however it is necessary to investigate further study including Yangtze river sediments. This study conclude that most of surface sediments in SEYSM attribute to the supply of considerable amount of sediments from the nearby Korean rivers. The large sediment budget and high accumulation rate in the SEYSM can be explained by erosion and reworking of surface sediments in this area. Tidal and regional current system around SEYSM might contribute these erosional and depositional regimes.

Clay Mineralogical Characteristics and Origin of Sediments Deposited during the Pleistocene in the Ross Sea, Antarctica (남극 로스해 대륙대 플라이스토세 코어 퇴적물의 점토광물학적 특성 및 기원지 연구)

  • Jung, Jaewoo;Park, Youngkyu;Lee, Kee-Hwan;Hong, Jongyong;Lee, Jaeil;Yoo, Kyu-Cheul;Lee, Minkyung;Kim, Jinwook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.163-172
    • /
    • 2019
  • A long core (RS15-LC48) was collected at a site in the continental rise between the Southern Ocean and the Ross Sea (Antarctica) during the 2015 Ross Sea Expedition. The mineralogical characteristics and the origin of clay minerals in marine sediments deposited during the Quaternary in the Ross Sea were determined by analyzing sedimentary facies, variations in grain size, sand fraction, mineralogy, clay mineral composition, illite crystallinity, and illite chemical index. Core sediments consisted mostly of sandy clay, silty clay, or ice rafted debris (IRD) and were divided into four sedimentary facies (units 1-4). The variations in grain size distribution and sand content with depth were very similar to the variations in magnetic susceptibility. Various minerals such as smectite, chlorite, illite, kaolinite, quartz, and plagioclase were detected throughout the core. The average clay mineral composition was dominated by illite (52.7 %) and smectite (27.7 %), with less abundant clay minerals of chlorite (11.0 %) and kaolinite (8.6 %). The IC and illite chemical index showed strong correlation trends with depth. The increase in illite and chlorite content during the glacial period, together with the IC and chemical index values, suggest that sediments were transported from the bedrocks of the Transantarctic Mountains. During the interglacial period, smectite may have been supplied by the surface current from Victoria Land, in the western Ross Sea. High values for IC and the illite chemical index also indicate relatively warm climate conditions during that period.

Changes of Clay Mineral Assemblages in the Northern Part of the Aleutian Basin in the Bering Sea during the Last Glacial Period (마지막 빙하기 동안 베링해 알류샨 분지 북부 지역의 점토광물 조성 변화)

  • Kim, Sung-Han;Cho, Hyen-Goo;Khim, Boo-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.19-29
    • /
    • 2011
  • Clay mineral assemblages of core PC25A collected from the northern part of the Aleutian Basin in the Bering Sea were examined in order to investigate changes in sediment provenances and transport pathways. Ages of core PC25A were determined by both Last Appearance Datum of radiolaria (L. nipponica sakaii; $48.6{\pm}2\; ka$) and age control points obtained by the correlations of $a^{\ast},\; b^{\ast}$, and laminated sediment layers with the adjacent core PC23A, whose ages are well constrained. The corebottom age of core PC25A was calculated to be about 57,600 yr ago and core-top might be missing during coring execution. Average contents of smectite, illite, kaolinite, and chlorite during the last glacial period are 11% (5~24%), 47% (36~58%), 13% (9~19%), and 29% (21~40%), respectively. Clay mineral assemblages of the last glacial period are characterized by higher illite and lower smectite contents than those of core MC24 representing the modern values. Illite-rich clay sediments during the warm Early Holocene were transported from the northern part of Alaska continent (Province 1) through the ice-melt waters. During the deglacial period (B${\phi}$lling-All${\phi}$rod) of MIS 2, clay-sized particles seemed to be also transported by ice-melt waters mainly from Province 2 and Province 3 located farther south than Province 1. Higher smectite content during the Last Glacial Maximum is attributed to increased amounts of clay particles from the adjacent Alaska Peninsula (Province 4). From the early to the middle MIS 3, illite and smectite contents decreased, whereas chlorite content increased. With the low sea level standing during MIS 3 the supply of clay sediments from Province 2 and Province 3 was most likely intensified. Changes in clay mineral assemblages of core PC25A located in the northern part of the Aleutian Basin in the Bering Sea are closely related to the change of surface current system caused by sea level variation during the last glacial period.

Hydrothermal Alteration around the Tofua Arc (TA) 25 Seamounts in Tonga Arc (통가열도 TA 25 해저산의 열수변질)

  • Cho, Hyen Goo;Kim, Dong-Ho;Koo, Hyo Jin;Um, In Kwon;Choi, Hunsoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.169-181
    • /
    • 2014
  • Korea government has consistently investigated the development of economic mineral deposits in the Tofua volcanic arc, Tonga since 2008 for the secure of sea floor mineral resources. We studied the composition and distribution of minerals formed by hydrothermal activity around TA 25 seamounts of the Tofua volcanic arc, Lau Basin, Tonga, using X-ray diffraction analysis, scanning electron microscopy, X-ray fluorescence spectrometry, and inductively coupled plasma atomic emission spectrometry. We used 7 core samples and 9 surface sediment samples. Barite, sphalerite, and clinoclase are present in the most volcanic vent area. Gypsum, smectite, and kaolin mineral are distributed in vent A area, chalcopyrite, pyrite, smectite, and kaolin mineral are in vent B and C area, and gypsum, chalcopyrite, pyrite, and goethite are in vent D area. From the study of clay fraction, smectite and few kaolinite are detected in the most studied area except inner part of caldera, which suggest that argillic alteration are dominant in the volcanic vent areas. Various sulfide or arsenide minerals were found in the hydrothermal vent B, C, and D. The mineralogy and geochemistry suggest higher hydrothermal activities in volcanic vent B, C, and D compared to vent A and inner caldera area. Therefore higher probabilities of massive sulfide deposits may occur in hydrothermal vent B, C, and D.

Mineralogical Properties of Asian Dust Sampled at Deokjeok Island, Incheon, Korea in February 22, 2015 (2015년 2월 22일 인천광역시 덕적도에서 포집된 황사의 광물학적 특성)

  • Park, Mi Yeon;Jeong, Gi Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.79-87
    • /
    • 2016
  • Asian dust (Hwangsa) interacts with light, atmospheric gas, aerosol, and marine ecosystem, affecting Earth climate. Mineralogical properties are essential to understand the interaction between the dust and environments. In this study, we examined the mineralogical properties of Asian dust collected at Deokjeok Island, Incheon, Korea in February 22, 2015. X-ray diffraction (XRD) analyses showed that phyllosilicate minerals (62 wt%) dominate the Asian dust. Illite-smectite series clay minerals (55%) were common with minor chlorite (5%) and kaolinite (2%). Non-phyllosilicate minerals were quartz (18%), plagioclase (10%), K-feldspar (4%), calcite (4%), and gypsum (1%). Similar results were obtained by mineral quantification using scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). Transmission electron microscopy combined with EDS confirmed illite-smectite series clay minerals as the dominant phyllosilicate type. Morphological analyses using SEM showed clay agglomerates, clay-coated quartz, feldspars, and micas. Gypsum grains were common on the particle surface, while calcite nanofibers, previously reported as common on the surface, were rare, indicating the reaction of calcite and acidic atmospheric pollutants to form gypsum. The analytical result of 2015 Asian dust would contribute to the establishment of mineralogical base for the modeling of the interaction between Asian dust and environments.