Browse > Article
http://dx.doi.org/10.22807/KJMP.2022.35.4.397

Mineralogical Comparison between Asian Dust and Bedrock in Southern Mongolia  

Gi Young, Jeong (Department of Earth and Environmental Sciences, Andong National University)
Publication Information
Korean Journal of Mineralogy and Petrology / v.35, no.4, 2022 , pp. 397-407 More about this Journal
Abstract
Mineralogical analysis of the bedrock of the Gobi Desert in southern Mongolia, the source of Asian dust, was conducted to trace the geological origin of the constituent minerals of Asian dust. The bedrock of the source of Asian dust consists of Paleozoic volcanics and volcaniclastic sedimentary rocks, Paleozoic granitic rocks, and Mesozoic sedimentary rocks. Paleozoic volcanics and volcaniclastic sediments lithified compactly, underwent greenschist metamorphism, and deformed to form mountain ranges. Mesozoic sedimentary rocks fill the basin between the mountain ranges of Paleozoic strata. In comparison to Paleozoic volcanic and sedimentary rocks, Mesozoic sedimentary rocks have lower contents of chlorite and plagioclase, but high contents of clay minerals including interstratified illite-smectite, smectite, and kaolinite. Paleozoic granites characteristically contain amphibole and biotite. Compared with the mineral composition of bedrock in source, Asian dust is a mixture of detrital particles originating from Paleozoic and Mesozoic bedrocks. However, the mineral composition of Mesozoic sedimentary rocks is closer to that of Asian dust. Less lithified Mesozoic sedimentary rocks easily disintegrated to form silty soils which are deflated to form Asian dust.
Keywords
Asian dust; Clay minerals; Origin; Sedimentary rocks; Weathering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jeong, G.Y., Hillier, S. and Kemp, R.A., 2011b, Changes in mineralogy of loess-paleosol sections across the Chinese Loess Plateau. Quaternary Research, 75, 245-255.   DOI
2 Jeong, G.Y., Choi, J.-H., Lim, H.S., Seong, C. and Yi, S.B., 2013, Deposition and weathering of Asian dust in Paleolithic sites, Korea. Quaternary Science Reviews, 78, 283-300.   DOI
3 Jeong, G.Y., Kim, J.Y., Seo, J., Kim, G.M., Jin, H.C. and Chun, Y., 2014, Long-range transport of giant particles in Asian dust identified by physical, mineralogical, and meteorological analysis. Atmospheric Chemistry and Physics, 14, 505-521, doi:10.5194/acp-14-505-2014.   DOI
4 Journet, E., Desboeufs, K.V., Caquineau, S. and Colin, J.-L., 2008, Mineralogy as a critical factor of dust iron solubility. Geophysical Research Letters, 35, L07805, doi:10.1029/2007GL031589.   DOI
5 Karydis, V.A., Tsimpidi, A.P., Bacer, S., Pozzer, A., Nenes, A. and Lelieveld, J., 2017, Global impact of mineral dust on cloud droplet number concentration. Atmospheric Chemistry and Physics, 17, 5601-5621.   DOI
6 Kiselev, A., Bachmann, F., Pedevilla, P., Cox, S.J., Michaelides, A., Gerthsen, D. and Leisner, T., 2017, Active sites in heterogeneous ice nucleation-the example of K-rich feldspars. Science, 355, 367-371.   DOI
7 Lamb, M.A. and Badarch, G., 2001, Paleozoic sedimentary basins and volcanic arc systems of southern Mongolia: new geochemical and petrographic constraints. In: Henrix, M. S., and Davis, G. A., eds., Paleozoic and Mesozoic tectonic evolution of central Asia: from continental assembly to intracontinental deformation. Geological Society of America Memoir 194, Boulder, Colorado, 117-149.
8 Laskin, A., Wietsma, T.W., Krueger, B.J. and Grassian, V.H., 2005, Heterogeneous Chemistry of Individual Mineral dust particles with nitric acid: a combined CCSEM/EDX, ESEM, and ICP-MS study. Journal of Geophysical Research: Atmospheres, 110, D10208, doi:10.1029/2004JD005206.   DOI
9 Martin, J.H. and Fitzwater, S.F., 1988, Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331, 341-342.   DOI
10 McKendry, I.G., Macdonald, A.M., Leaitch, W.R., van Donkelaar, A., Zhang, Q., Duck, T. and Martin, R.V., 2008, TransPacific dust events observed at Whistler, British Columbia during INTEXB. Atmospheric Chemistry and Physics, 8, 6297-6307, doi:10.5194/acp-8-6297-2008.   DOI
11 Mineral Resources Authority of Mongolia and Mongolian Academy of Sciences, 1998, Geological Map of Mongolia Scale 1:1,000,000 Summary. Ulaanbaatar.
12 Mizota, C., Endo, H., Um, K.T., Kusakabe, M. and Matsuhisa, Y., 1991, The eolian origin of silty mantle in sedimentary soils from Korea and Japan. Geoderma 49, 153-164.   DOI
13 Moore, D.M. and Reynolds Jr., R.C., 1997, X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, USA.
14 Myriokefalitakis, S., Ito, A., Kanakidou, M., Nenes, A., Krol1, M.C., Mahowald, N.M., Scanza, R.A., Hamilton, D.S., Johnson, M.S., Meskhidze, N., Kok, J.F., Guieu, C., Baker, A.R., Jickells, T.D., Sarin, M.M., Bikkina, S., Shelley, R., Bowie, A., Perron, M.M.G. and Duce, R.A., 2018, Reviews and syntheses: the GESAMP atmospheric iron deposition model intercomparison study. Biogeosciences, 15, 6659-6684.   DOI
15 Nousiainen, T., 2009, Optical modeling of mineral dust particles: A review. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 1261-1279, doi:10.1016/j.jqsrt.2009.03.002.   DOI
16 Park, M.Y. and Jeong, G.Y., 2016, Mineralogical Properties of Asian Dust Sampled at Deokjeok Island, Incheon, Korea in February 22, 2015. Journal of the Mineralogical Society of Korea, 29, 79-87.   DOI
17 Uno, I., Eguchi, K., Yumimoto, K., Takemura, T., Shimizu, A., Uematsu, M., Liu, Z., Wang, Z., Hara, Y. and Sugimoto, N., 2009, Asian dust transported one full circuit around the globe. Nature Geoscience, 2, doi10.1038/NGEO583.
18 Rex, R.W., Syers, J.K., Jackson, M.L. and Clayton, R.N., 1969, Eolian origin of quartz in soils of Hawaiian Islands and in Pacific pelagic sediments. Science, 163, 277-279.   DOI
19 Shi, Z., Shao, L., Jones, T.P. and Lu, S., 2005, Microscopy and mineralogy of airborne particles collected during severe dust storm episodes in Beijing, China. Journal of Geophysical Research: Atmospheres, 110, D01303, doi:10.1029/2004JD005073.   DOI
20 Sokolik, I.N. and Toon, O.B., 1999, Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. Journal of Geophysical Research: Atmospheres, 104, 9423-9444.   DOI
21 Winter, J.D., 2013, Principles of igneous and metamorphic petrology. Pearson education.
22 Atkinson, J.D., Murray, B.J., Woodhouse, M.T., Whale, T.F., Baustian, K.J., Carslaw, K.S., Dobbie, S., O'Sullivan, D. and Malkin, T.L., 2013, The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature, 498, 355-358. doi:10.1038/nature12278.   DOI
23 Badarch, G., Cunningham, W.K. and Windley, B.F., 2002, A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences, 21, 87-110.
24 Boles, J.R., 1982, Active albitization of plagioclase, Gulf Coast Tertiary. American Journal of Science, 282, 165-180.   DOI
25 Buseck, P.R. and Posfai, M., 1999, Airborne minerals and related aerosol particles: Effects on climate and the environment. Proceedings of the National Academy of Sciences, 96, 3372-3379.   DOI
26 Guy, A., Schulmann, K., Munschy, M., Miehe, J.M., Edel, J.B., Lexa, O. and Fairhead, D., 2014, Geophysical constraints for terrane boundaries in southern Mongolia, Journal of Geophysical Research: Solid Earth, 119, 7966-7991.   DOI
27 Chipera, S.J. and Bish, D.L., 2013, Fitting Full X-Ray Diffraction Patterns for Quantitative Analysis: A Method for Readily Quantifying Crystalline and Disordered Phases. Advances in Materials Physics and Chemistry, 3, 47-53.   DOI
28 Cunningham, D., Davies, S. and McLean, D., 2009, Exhumation of a Cretaceous rift complex within a Late Cenozoic restraining bend, southern Mongolia: Implications for the crustal evolution of the Gobi Altai region. Journal of Geological Society, London. 166, 321-333.   DOI
29 Graham, S.A., Hendrix, M.S., Johnson, C.L., Badamgarav, D., Badarch, G., Amory, J., Porter, M., Barsbold, R., Webb, L.E. and Hacker, B.R., 2001, Sedimentary record and tectonic implications of late Mesozoic rifting, southeast Mongolia. Geological Society of America Bulletin, 113, 1560-1579.   DOI
30 Helo, C., Hegner, E., Kroner, A., Badarch, G., Tomurtogoo, O., Windley, B.F. and Dulski, P., 2006, Geochemical signature of Paleozoic accretionary complexes of the Central Asian Orogenic Belt in South Mongolia: Constraints on arc environments and crustal growth. Chemical Geology, 227, 236-257.   DOI
31 Jeong, G.Y., 2008, Bulk and single-particle mineralogy of Asian dust and a comparison with its source soils. Journal of Geophysical Research: Atmospheres, 113, D02208, doi:10.1029/2007JD008606.   DOI
32 Jeong, G.Y., 2020, Mineralogy and geochemistry of Asian dust: dependence on migration path, fractionation, and reactions with polluted air. Atmospheric Chemistry and Physics, 20, 7411-7428.   DOI
33 Jeong, G.Y., Hillier, S. and Kemp, R.A., 2008, Quantitative bulk and single-particle mineralogy of a thick Chinese loess-paleosol section: implications for loess provenance and weathering. Quaternary Science Reviews, 27, 1271-1287.   DOI
34 Jeong, G.Y. and Achterberg, E.P., 2014, Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans. Atmospheric Chemistry and Physics, 14, 12415-12428.   DOI
35 Jeong, G.Y. and Nousiainen, T., 2014, TEM analysis of the internal structures and mineralogy of Asian dust particles and the implications for optical modeling. Atmospheric Chemistry and Physics, 14, 7233-7254, doi:10.5194/acp-14-7233-2014, 2014.   DOI
36 Jeong, G.Y., Choi, H.-J. and Kwon, S.-K., 2011a, Single-particle mineralogy and mixing state of Asian Dust, Spring, 2009. Journal of the Mineralogical Society of Korea, 24, 225-234.   DOI