• Title/Summary/Keyword: kainic acid

Search Result 53, Processing Time 0.033 seconds

Inhibition of eNOS/sGC/PKG Pathway Decreases Akt Phosphorylation Induced by Kainic Acid in Mouse Hippocampus

  • Lee, Sang-Hyun;Byun, Jong-Seon;Kong, Pil-Jae;Lee, Hee-Jae;Kim, Duk-Kyung;Kim, Hae-Sung;Sohn, Jong-Hee;Lee, Jae-Jun;Lim, So-Young;Chun, Wan-Joo;Kim, Sung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • The serine/threonine kinase Akt has been shown to play a role of multiple cellular signaling pathways and act as a transducer of many functions initiated by growth factor receptors that activate phosphatidylinositol 3-kinase (PI3K). It has been reported that phosphorylated Akt activates eNDS resulting in the production of NO and that NO stimulates soluble guanylate cyclase (sGC), which results in accumulation of cGMP and subsequent activation of the protein kinase G (PKG). It has been also reported that PKG activates PI3K/Akt signaling. Therefore, it is possible that PI3K, Akt, eNOS, sGC, and PKG form a loop to exert enhanced and sustained activation of Akt. However, the existence of this loop in eNOS-expressing cells, such as endothelial cells or astrocytes, has not been reported. Thus, we examined a possibility that Akt phosphorylation might be enhanced via eNOS/sGC/PKG/PI3K pathway in astrocytes in vivo and in vitro. Phosphorylation of Akt was detected in astrocytes after KA treatment and was maintained up to 72 h in mouse hippocampus. 2 weeks after KA treatment, astrocytic Akt phosphorylation was normalized to control. The inhibition of eNOS, sGC, and PKG significantly decreased Akt and eNDS phosphorylation induced by KA in astrocytes. In contrast, the decreased phosphorylation of Akt and eNDS by eNDS inhibition was significantly reversed with PKG activation. The above findings in mouse hippocampus were also observed in primary astrocytes. These data suggest that Akt/eNOS/sGC/PKG/PI3K pathway may constitute a loop, resulting in enhanced and sustained Akt activation in astrocytes.

Curcumin Attenuates Gliall Cell Activation But Cannot Suppress Hippocampal CA3 Neuronal Cell Death in i.c.v. Kanic Acid Injection Model

  • Cho, Jae-Young;Kong, Pil-Jae;Chun, Wan-Joo;Moon, Yeo-Ok;Park, Yee-Tae;Lim, So-Young;Kim, Sung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.307-310
    • /
    • 2003
  • Kainic acid (KA) is a structural analogue of glutamate that interacts with specific presynaptic and postsynaptic receptors to potentiate the release and excitatory actions of glutamate. Systemic or intracerebroventricular (i.c.v.) administration of KA to experimental animals elicits multifocal seizures with a predominantly limbic localization, and results in neuronal death of cornu ammonia 1 (CA1), reactive gliosis and biochemical changes in the hippocampus and other limbic structures. Several lines of evidence suggest that reactive oxygen species (ROS) play a pivotal role in the pathogenesis of excitotoxic death by KA. Curcumin has been known to possess anti-oxidative and anti-inflammatory activities. In this study, the effects of curcumin on KA induced hippocampal cell death, reactive gliosis and biochemical changes in reactive glia were investigated by immunohistochemical methods. Our data demonstrated that curcumin attenuated KA-induced astroglial and microglial activation although it did not protect KA-induced hippocampal cell death.

Ginsenoside Rg1 Reduced Spontaneous Epileptiform Discharges and Behavioral Seizure in the Zebrafish

  • Lee, Yun-Kyoung;Park, Eun-Jin;Lee, Sang-Hun;Kim, Yeon-Hwa;Lee, Chang-Joong
    • Journal of Ginseng Research
    • /
    • v.33 no.1
    • /
    • pp.48-54
    • /
    • 2009
  • Epileptifrom discharges were induced in the telencephalon of the adult zebrafish via perfusion with pentylenetetrazole (PTZ), bicuculline methiodide, kainic acid-treated artificial cerebrospinal fluid (aCSF), and $Mg^{2+}$-free aCSF. Ginseng total saponin [GTS ($50{\mu}g/ml$)] was shown to attenuate the occurrence rate of epilpetiform discharges by 50-75%, compared to the control. Ginsenoside $Rg_1$ ($130{\mu}M$) reduced the epileptiform discharges in the isolated telencephalon and delayed the occurrence of behavioral seizures observed from the adult zebrafish placed in the PTZ (10 mM)-containing aquarium water. However, Re was not effective in the suppression of epileptiform discharges and behavioral seizures. These results indicate that $Rg_1$ may be useful in the control of epileptiform discharges and effective in controlling behavioral seizures, and that the zebrafish can be used as a model animal for the testing of potential anticonvulsant drugs.

Astrogliosis Is a Possible Player in Preventing Delayed Neuronal Death

  • Jeong, Hey-Kyeong;Ji, Kyung-Min;Min, Kyoung-Jin;Choi, Insup;Choi, Dong-Joo;Jou, Ilo;Joe, Eun-Hye
    • Molecules and Cells
    • /
    • v.37 no.4
    • /
    • pp.345-355
    • /
    • 2014
  • Mitigating secondary delayed neuronal injury has been a therapeutic strategy for minimizing neurological symptoms after several types of brain injury. Interestingly, secondary neuronal loss appeared to be closely related to functional loss and/or death of astrocytes. In the brain damage induced by agonists of two glutamate receptors, N-ethyl-D-aspartic acid (NMDA) and kainic acid (KA), NMDA induced neuronal death within 3 h, but did not increase further thereafter. However, in the KA-injected brain, neuronal death was not obviously detectable even at injection sites at 3 h, but extensively increased to encompass the entire hemisphere at 7 days. Brain inflammation, a possible cause of secondary neuronal damage, showed little differences between the two models. Importantly, however, astrocyte behavior was completely different. In the NMDA-injected cortex, the loss of glial fibrillary acidic protein-expressing ($GFAP^+$) astrocytes was confined to the injection site until 7 days after the injection, and astrocytes around the damage sites showed extensive gliosis and appeared to isolate the damage sites. In contrast, in the KA-injected brain, $GFAP^+$ astrocytes, like neurons, slowly, but progressively, disappeared across the entire hemisphere. Other markers of astrocytes, including $S100{\beta}$, glutamate transporter EAAT2, the potassium channel Kir4.1 and glutamine synthase, showed patterns similar to that of GFAP in both NMDA- and KA-injected cortexes. More importantly, astrocyte disappearance and/or functional loss preceded neuronal death in the KA-injected brain. Taken together, these results suggest that loss of astrocyte support to neurons may be a critical cause of delayed neuronal death in the injured brain.

Acupuncture Treatment at HT8 Supresses Seizure and Inflammation in Hippocampi on an Epilepsy Mice Model (간질(癎疾) 동물(動物) 모델을 이용한 소부혈(少府穴)의 간질발작(癎疾發作) 및 해마(海馬)의 염증(炎症) 억제 효과(效果) 검증(檢證))

  • Doo, Ah-Reum;Kim, Seung-Nam;Yin, Chang-Shik;Kim, Yeon-Jung;Lee, Hye-Jung;Kim, Seung-Tae;Park, Hi-Joon
    • Korean Journal of Acupuncture
    • /
    • v.29 no.3
    • /
    • pp.396-405
    • /
    • 2012
  • Objectives : To confirm whether acupuncture can suppress the degree of seizure and the activation of astrocytes in hippocampi using kainic acid(KA)-induced epilepsy mouse model. Methods : 8 weeks C57BL/6 mice(20~25 g) were given acupuncture once a day at acupoint HT8(Shaofu) bilaterally during 2 days before KA injection. After an intraperitoneal injection of 30 mg/kg KA, acupuncture treatment was subsequently administered once more(total 3 times), and the degree of seizure was observed for 120 min. The neuronal cell death, pERK expression, and astrocyte activation confirmed 1 hour and 24 hours after KA injection. Results : Acupuncture treatment at HT8 suppressed KA-induced epileptic seizure. One hour after KA injection, the pERK expression was increased, which was reduced by the acupuncture treatment. Twenty four hours after injection, the treatment decreased the KA-induced neuronal cell death, the interleukin-$1{\beta}$ expression and the astrocyte activation in the CA3 region of the mouse hippocampus. Conclusions : Acupuncture treatment at HT8 decreases the KA-induced epileptic seizure, the neural cell inflammation and death.

Lesion of Subthalamic Nucleus in Parkinsonian Rats : Effects of Dopamine $D_1$ and $D_2$ Receptor Agonists on the Neuronal Activities of the Substantia Nigra Pars Reticulata

  • Park, Yong-Sook;Jeon, Mi-Fa;Lee, Bae-Hwan;Chang, Jin-Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.6
    • /
    • pp.455-461
    • /
    • 2007
  • Objective : It was hypothesized that dopamine agonist administration and subthalamic nucleus (STN) lesion in the rat might have a synergistic effect on the neuronal activities of substantia nigra pars reticulata (SNpr) as observed in patients with Parkinson's disease. The effects of SKF38393 (a $D_1$ receptor agonist) and Quinpirole (a $D_2$ receptor agonist) were compared in parkinsonian rat models with 6- hydroxydopamine (6-OHDA) after STN lesion. Methods : SKF38393 and Quinpirole were consecutively injected intrastriatally. SNpr was microrecorded to ascertain the activity of the basal ganglia output structure. The effect of SKF38393 or Quinpirole injection on the firing rate and firing patterns of SNpr was investigated in medial forebrain bundle (MFB) lesioned rats and in MFB+STN lesioned rats. Results : The administration of SKF38393 decreased SNpr neuronal firing rates and the percentage of burst neurons in the MFB lesioned rats, but did not alter them in MFB+STN lesioned rats. The administration of Quinpirole significantly decreased the spontaneous firing rate in the MFB lesioned rats. However, after an additional STN lesion, it increased the percentage of burst neurons. Conclusion : This study demonstrated that dopamine agonists and STN lesion decreased the hyperactive firing rate and the percentage of burst neurons of SNpr neurons in 6-OHDA lesioned rats, respectively. Quinpirole with STN lesion increased a percentage of burst neurons. To clear the exact interactive mechanism of $D_1$ and $D_2$ agonist and the corresponding location, it should be followed a study using a nonselective dopamine agonist and $D_1$, $D_2$ selective antagonist.

Melatonin Induces Akt Phosphorylation through Melatonin Receptor- and PI3K-Dependent Pathways in Primary Astrocytes

  • Kong, Pil-Jae;Byun, Jong-Seon;Lim, So-Young;Lee, Jae-Jun;Hong, Sung-Jun;Kwon, Kwang-Jun;Kim, Sung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.2
    • /
    • pp.37-41
    • /
    • 2008
  • Melatonin has been reported to protect neurons from a variety of neurotoxicity. However, the underlying mechanism by which melatonin exerts its neuroprotective property has not yet been clearly understood. We previously demonstrated that melatonin protected kainic acid-induced neuronal cell death in mouse hippocampus, accompanied by sustained activation of Akt, a critical mediator of neuronal survival. To further elucidate the neuroprotective action of melatonin, we examined in the present study the causal mechanism how Akt signaling pathway is regulated by melatonin in a rat primary astrocyte culture model. Melatonin resulted in increased astrocytic Akt phosphorylation, which was significantly decreased with wortmannin, a specific inhibitor of PI3K, suggesting that activation of Akt by melatonin is mediated through the PI3K-Akt signaling pathway. Furthermore, increased Akt activation was also significantly decreased with luzindole, a non-selective melatonin receptor antagonist. As downstream signaling pathway of Akt activation, increased levels of CREB phoshorylation and GDNF expression were observed, which were also attenuated with wortmannin and luzindole. These results strongly suggest that melatonin exerts its neuroprotective property in astrocytes through the activation of plasma membrane receptors and then PI3K-Akt signaling pathway.