• Title/Summary/Keyword: k-symmetric points

Search Result 67, Processing Time 0.028 seconds

Nonlinear response of a resonant viscoelastic microbeam under an electrical actuation

  • Zamanian, M.;Khadem, S.E.;Mahmoodi, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.387-407
    • /
    • 2010
  • In this paper, using perturbation and Galerkin method, the response of a resonant viscoelastic microbeam to an electric actuation is obtained. The microbeam is under axial load and electrical load. It is assumed that midplane is stretched, when the beam is deflected. The equation of motion is derived using the Newton's second law. The viscoelastic model is taken to be the Kelvin-Voigt model. In the first section, the static deflection is obtained using the Galerkin method. Exact linear symmetric mode shape of a straight beam and its deflection function under constant transverse load are used as admissible functions. So, an analytical expression that describes the static deflection at all points is obtained. Comparing the result with previous research show that using deflection function as admissible function decreases the computation errors and previous calculations volume. In the second section, the response of a microbeam resonator system under primary and secondary resonance excitation has been obtained by analytical multiple scale perturbation method combined with the Galerkin method. It is shown, that a small amount of viscoelastic damping has an important effect and causes to decrease the maximum amplitude of response, and to shift the resonance frequency. Also, it shown, that an increase of the DC voltage, ratio of the air gap to the microbeam thickness, tensile axial load, would increase the effect of viscoelastic damping, and an increase of the compressive axial load would decrease the effect of viscoelastic damping.

Field Measurements and CFD Simulations of Indoor Thermal Environments in the Assembly Hall (대형 강의실의 실내 열환경 실측 및 컴퓨터시뮬레이션 비교 연구)

  • Yoon, JaeOck
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.179-186
    • /
    • 2004
  • The evaluation of the indoor environment of the Assembly Hall in the University, which is designed to be a large space, requires efficient design of its heating system that takes into consideration natural convection and the characteristics of the occupant's spaces. Indoor thermal environment was measured in the field and simulated with CFD code. The estimations of temperature distribution and indoor airflow distribution must be carried out simultaneously, as the thermal stratification is induced by natural convection flows. In order to simulate the even distribution of factors affecting the indoor environment, including temperature and airflow, Phoenics is used. The turbulent flow model adopted is the RNG k- model. The inlets and outlets of the air-conditioning systems, material and thermal properties, and the size of the test room ($35m{\times}18m{\times}10m$) are used for the simulation. Since the Assembly Hall is symmetric, half of the space is simulated. A Cartesian grid is used for calculation and the number of grids are respectively $60{\times}45{\times}35$. The results of the computer simulation during winter conditions are compared with the measurements at the typical points in the assembly hall with the heating system. After evaluating the results of the computer simulations, the methods of the heating system and layout are suggested.

Assessment of non-prismatic beams having symmetrical parabolic haunches with constant haunch length ratio of 0.5

  • Yuksel, S. Bahadir
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.849-866
    • /
    • 2012
  • Single span historic bridges often contain non-prismatic members identified with a varying depth along their span lengths. Commonly, the symmetric parabolic height variations having the constant haunch length ratio of 0.5 have been selected to lower the stresses at the high bending moment points and to maintain the deflections within the acceptable limits. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces (FEFs) and fixed-end moments (FEMs) becomes a complex problem. Therefore, this study aimed to investigate the behavior of non-prismatic beams with symmetrical parabolic haunches (NBSPH) having the constant haunch length ratio of 0.5 using finite element analyses (FEA). FEFs and FEMs due to vertical loadings as well as the stiffness coefficients and the carry-over factors were computed through a comprehensive parametric study using FEA. It was demonstrated that the conventional methods using frame elements can lead to significant errors, and the deviations can reach to unacceptable levels for these types of structures. Despite the robustness of FEA, the generation of FEFs and FEMs using the nodal outputs of the detailed finite element mesh still remains an intricate task. Therefore, this study advances to propose effective formulas and dimensionless estimation coefficients to predict the FEFs, FEMs, stiffness coefficients and carry-over factors with reasonable accuracy for the analysis and re-evaluation of the NBSPH. Using the proposed approach, the fixed-end reactions due to vertical loads, and also the stiffness coefficients and the carry-over factors of the NBSPH can be determined without necessitating the detailed FEA.

An exact solution for mechanical behavior of BFRP Nano-thin films embedded in NEMS

  • Altabey, Wael A.
    • Advances in nano research
    • /
    • v.5 no.4
    • /
    • pp.337-357
    • /
    • 2017
  • Knowledge of thin films mechanical properties is strongly associated to the reliability and the performances of Nano Electro Mechanical Systems (NEMS). In the literature, there are several methods for micro materials characterization. Bulge test is an established nondestructive technique for studying the mechanical properties of thin films. This study improve the performances of NEMS by investigating the mechanical behavior of Nano rectangular thin film (NRTF) made of new material embedded in Nano Electro Mechanical Systems (NEMS) by developing the bulge test technique. The NRTF built from adhesively-bonded layers of basalt fiber reinforced polymer (BFRP) laminate composite materials in Nano size at room temperature and were used for plane-strain bulging. The NRTF is first pre-stressed to ensure that is no initial deflection before applied the loads on NRTF and then clamped between two plates. A differential pressure is applying to a deformation of the laminated composite NRTF. This makes the plane-strain bulge test idea for studying the mechanical behavior of laminated composite NRTF in both the elastic and plastic regimes. An exact solution of governing equations for symmetric cross-ply BFRP laminated composite NRTF was established with taking in-to account the effect of the residual strength from pre-stressed loading. The stress-strain relationship of the BFRP laminated composite NRTF was determined by hydraulic bulging test. The NRTF thickness gradation in different points of hemisphere formed in bulge test was analysed.

A Study on the Dose Changes Depending on the Shielding Block Type of Irradiation During Electron Beam Theraphy (전자선치료 시 조사부위 차폐물 형태에 따른 선량변화 연구)

  • Lee, Sun-Yeb;Park, Cheol-Soo;Lee, Jae-Seung;Goo, Eun-Hoe;Cho, Jae-Hwan;Kim, Eng-Chan;Moon, Soo-Ho;Kim, Jin-Soo;Park, Cheol-Woo;Dong, Kyung-Rae;Kweon, Dae-Cheol
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.253-260
    • /
    • 2010
  • The primary focus of this study was to explore the variation in dose distributions of electron beams between different types of construction structure of cut-out blocks embodied in electron cones, given that the structure is considered one of the causes of multiple scattered radiation from electrons which may affect dose distributions. For evaluation, two types of cut-out blocks, divergency and straight, manufactured for this study, were compared in terms of area of interval in distribution of dose, and flatness and symmetric state of surface being radiated. The results showed that divergency cut-out blocks reduced the lateral scattering effects on the thickness of cut-out blocks more substantially than straight ones, leading to more uniform dose distribution at baseline depth. Notably in divergency cut-out blocks, the high dose area decreased more significantly, and more uniform dose distribution was observed at the edge of the irradiated field. This points to a need to consider the characteristics of dose distribution of electron beams when setting up radiotherapy planing at the venues. Therefore, this study is significant as an exploratory work for ensuring high accuracy in dose delivery for patients.

Comparison of Hydrolysis from In Vitro Digestion Using Symmetric and Asymmetric Triacylglycerol Compounds by Enzymatic Interesterification (효소적으로 합성된 대칭형과 비대칭형 Triacylglycerol 혼합물의 In Vitro Digestion에서의 소화율 비교)

  • Woo, Jeong Min;Lee, Ki Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.842-853
    • /
    • 2014
  • For developing indigestible lipids, symmetric triacylglycerol (ST) and asymmetric triacylglycerol (AT) were produced by enzymatic interesterification using high oleic sunflower oil, palmitic ethyl ester, and stearic ethyl ester in a shaking water bath. Used enzymes were Lipozyme RMIM for ST and Lipozyme TLIM for AT. To remove ethyl ester from reactants, methanol fractionation (reactant : methanol=1:5, w/v, $25^{\circ}C$) and florisil separation (reactant : florisil=1:8, w/w) were applied. Acetone fractionation (reactant : acetone=1:9, w/v) was implemented to separate triacylglcerol (TAG) species into ST and AT. Fractions I (before fractionation), II (after fractionation, liquid phase) and III (after fractionation, solid phase) were separated from ST, whereas fractions IV (after 1st fractionation, liquid phase) and V (after 2nd fractionation, solid phase) were from AT. From sn-2 fatty acid composition analysis, the sum of palmitic acid (C16:0) and stearic acid (C18:0) was 4.9~6.5 area% in ST (I, II, III), and 41.9~43.9 area% in AT (IV, V). In vitro digestion was performed for 0, 15, 30, 60, and 120 minutes at $37^{\circ}C$ in a shaking water bath. For the digestion results, hydrolysis of V was only 40% compared to others (I, II, III, IV) at 120 minutes due to its melting point ($49^{\circ}C$). However, initially (15 minutes), hydrolysis (%) was as follows: V$32.5^{\circ}C$, $31.8^{\circ}C$) and different slip melting points ($31.3^{\circ}C$, $19.5^{\circ}C$). Even though IV has a lower TAG content composed of two saturated fatty acids than III, it had a similar melting point.

Variability of Mid-plane Symmetric Functionally Graded Material Beams in Free Vibration (중립면 대칭 기능경사재료 보의 자유진동 변화도)

  • Nguyen, Van Thuan;Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.3
    • /
    • pp.127-132
    • /
    • 2018
  • In this paper, a scheme for the evaluation of variability in the eigen-modes of functionally graded material(FGM) beams is proposed within the framework of perturbation-based stochastic analysis. As a random parameter, the spatially varying elastic modulus of FGM along the axial direction at the mid-surface of the beam is chosen, and the thru-thickness variation of the elastic modulus is assumed to follow the original form of exponential variation. In deriving the formulation, the first order Taylor expansion on the eigen-modes is employed. As an example, a simply supported FGM beam having symmetric elastic modulus with respect to the mid-surface is chosen. Monte Carlo analysis is also performed to check if the proposed scheme gives reasonable outcomes. From the analyses it is found that the two schemes give almost identical results of the mean and standard deviation of eigen-modes. With the propose scheme, the standard deviation shape of respective eigen-modes can be evaluated easily. The deviated mode shape is found to have one more zero-slope points than the mother modes shapes, irrespective of order of modes. The amount of deviation from the mean is found to have larger values for the higher modes than the lower modes.

A Cross-Diamond-Triangle Search Algorithm for Fast Block-Matching Motion Estimation (고속 블록 정합 움직임 측정을 위한 십자-다이아몬드-삼각 탐색 알고리즘)

  • Kim, Seong-Hoon;Shin, Jae-Min;Oh, Seoung-Jun;Ahn, Chang-Beom;Park, Ho-Chong;Sim, Dong-Gyu
    • Journal of Broadcast Engineering
    • /
    • v.10 no.3
    • /
    • pp.357-371
    • /
    • 2005
  • In this Paper, we propose a new motion search algorithm called CDTS (Cross-Diamond-Triangle Search algorithm) that uses optimal search pattern according to the position of a search area to improve the performance of CDS(Cross-Diamond Search algorithm) as well as CDHSs(Cross-Diamond-Hexagonal Searches algorithms). We analyze motion distributions in various test video sequences to apply optimal search pattern according to a position of search area. Based on the result of this analysis, we propose a new triangle-shaped search pattern whose structure is asymmetric while previous search patterns are generally symmetric in conventional algorithms. In CDTS, we apply cross- and diamond-shaped search patterns to central search areas, and triangle- and diamond-shaped patterns to the other areas. Applying CDTS to test video sequences, the proposed scheme can reduce search points more than CDS and CDHSs by 16.22$\%$ and 3.09$\%$, respectively, without any visual quality degradation.

Focus Adjustment Method with Statistical Analysis for an Interchangeable Zoom Lens with Symmetric Error Factors (대칭성 공차를 갖는 교환렌즈용 줌 렌즈의 핀트 조정법과 통계적 해석)

  • Ryu, J.M.;Jo, J.H.;Kang, G.M.;Lee, H.J.;Yoneyama, Suji
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.5
    • /
    • pp.230-238
    • /
    • 2011
  • There are many types of interchangeable zoom lens in the digital single lens reflex camera and the compact digital still camera system in order to meet various specifications such as the field angle. Thus special cases for which the focus adjustment using only an auto-focus group is not available in the focal point correction (that is, the focus adjustment) of both wide and tele-zoom positions are sometimes generated. In order to make each BFL(back focal length, BFL) coincide at wide and tele-zoom positions with each designed BFL, focus adjustment processes must be performed at least in these two points within the zoom lens system. In this paper, we propose a method of focus adjustment by using the concept of focus sensitivity, and we calculate a limit on focus adjustment distance by means of statistical analysis.

Study on mechanical performance of composite beam with innovative composite slabs

  • Yang, Yong;Yu, Yunlong;Zhou, Xianwei;Roeder, Charles W.;Huo, Xudong
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.537-551
    • /
    • 2016
  • A new type of composite beam which consists of a wide flange steel shape beam and an innovative type of composite slab was introduced. The composite slab is composed of concrete slab and normal flat steel plates, which are connected by perfobond shear connectors (PBL shear connectors). This paper describes experiments of two large-scale specimens of that composite beam. Both specimens were loaded at two symmetric points for 4-point loading status, and mechanical behaviors under hogging and sagging bending moments were investigated respectively. During the experiments, the crack patterns, failure modes, failure mechanism and ultimate bending capacity of composite beam specimens were investigated, and the strains of concrete and flat steel plate as well as steel shapes were measured and recorded. As shown from the experimental results, composite actions were fully developed between the steel shape and the composite slab, this new type of composite beams was found to have good mechanical performance both under hogging and sagging bending moment with high bending capacity, substantial flexure rigidity and good ductility. It was further shown that the plane-section assumption was verified. Moreover, a design procedure including calculation methods of bending capacity of this new type of composite beam was studied and proposed based on the experimental results, and the calculation methods based on the plane-section assumption and plastic theories were also verified by comparisons of the calculated results and experimental results, which were agreed with each other.